
КОМПЛЕКСИ n-METOKSIФЕНИЛТЕЛУРТРИХЛОРИДУ З АЛІЛЬНИМИ ТІОЕТЕРАМИ 5-АРИЛ-1,3,4-ОКСАДІАЗОЛУ

ДВНЗ «Ужгородський національний університет», 88000, м.Ужгород, вул.Підгірна, 46; e-mail: kutmykola@ukr.net

1,3,4-Оксадіазол та його функціональні похідні володіють широким спектром біологічної активності. Відомі приклади використання оксадіазолів у матеріалознавстві, як високоенергетичних молекул. Тому синтез нових функціональних похідних на їх основі є актуальною проблемою. В даній роботі наведено синтез алільніх тіоетерів 5-нітрофеніл-1,3,4-оксадіазолу реакцією алкілування відповідних тіонів аліл бромідом в спиртово-лужному середовищі. Такі тіоетери досліджувалися в реакціях з фенілселентригалогенідами, в результаті чого синтезовано галогениди оксадіазоло[2,3-d][1,3,4]тіаселеназинії. Нами досліджено взаємодію телуровмісного аналогу — n-метоксифенілтелефурилхлориду з алільними тіоетерами 5-нітрофеніл-1,3,4-оксадіазолу. Встановлено, що реакція між n-метоксифенілтелефурилхлоридом та досліджуваними алільніми тіоетерами протягом 8 годин відбувається з утворенням адуктів складу субстрат - електрофіл 1:1 невалентно від співвідношення реагентів. Спроби зміни полярності розчинника, збільшення часу реагування та зміни температурного режиму не змінили напряму реакції. На основі отриманих експериментальних спектральних даних та даних елементного аналізу запропоновано будову одержаних комплексів.

Ключові слова: n-метоксифенілтелефурилхлорид; 1,3,4-оксадіазол; алільні тіоетери; телуроганічні сполуки; молекулярні комплекси.
слабкій області спектру у вигляді двох дублетних сигналів при 8.84 м.ч. та 7.92 м.ч.

Вихідні 5-арилзаміщені-2-алілтіо-1,3,4-оксадіазоли 3, 4 містять два нуклеофільні центри для проходження циклізації – кратний зв'язок апільного фрагменту та атом N3, що робить їх перспективними в дослідженні електрофільній внутрішньомолекулярної циклізації [8,11,12]. В роботі [13] досліджено електрофільну циклізацію апільних тіоетерів 1,3,4-оксадіазолу з фенілселенатригаціонідами і встановлено, що 5-заміщені-2-алілтіо-1,3,4-оксадіазоли в хлороформі, діетиловому етері чи оцтовій кислоті зазнають селено-індукованої циклізації з утворенням оксадіазоло[2,3-d][1,3,4]тіаселеназинів

Враховуючи, що п-метоксифенілтелуртрихлорид є структурним аналогом фенілселенатригаціонідів, то можна було очікувати утворення продуктів циклізації при проведенні реакції апільних тіоетерів 3, 4 з апілтелуртрихлоридом, натомість одержано адукти складу субстрат-електрофіл 1:1. Слід відмітити, що аналогічні адукти були одержані при апілтіоселенукраюванні тіоненасичених тризолів [14]. Взаємодію телурового електрофілу з 5-(4-нітрофеніл)-2-алілтіо-1,3,4-оксадіазолом 3 проводили з використанням різних умов проведення реакції (Таблиця 1). Найкращий вихід адукту 5 виділено при проведенні реакції в хлороформі та діетиловому етері при нагріванні реакційної суміші протягом 4 годин.

Доказом утворення молекулярних комплексів у складі субстрат-електрофіл 1:1 слугують спектри ПМР сполук 5, 6. Так, в спектрі 1Н сполуки 5 чітко видно сигнали протонів вихідного тіоетеру з незначним їх зміщенням в сильне поле спектру на 0.2-0.3 м.ч., а також сигнали протонів молекули п-

Таблиця 1. Умови проведення взаємодії п-метоксифенілтелуртрихлориду з тіоетером 3

<table>
<thead>
<tr>
<th>Розчинник</th>
<th>Співвідношення реагентів</th>
<th>Час проведення реакції</th>
<th>Температура</th>
<th>Вихід адуктів</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хлороформ</td>
<td>1:1</td>
<td>8 год</td>
<td>Кімнатна температура</td>
<td>53</td>
</tr>
<tr>
<td>Хлороформ</td>
<td>1:1</td>
<td>4 год</td>
<td>Нагрівання</td>
<td>60</td>
</tr>
<tr>
<td>Хлороформ</td>
<td>1:2</td>
<td>8 год</td>
<td>Кімнатна температура</td>
<td>63</td>
</tr>
<tr>
<td>Льодяна оцтована кислота</td>
<td>1:1</td>
<td>8 год</td>
<td>Кімнатна температура</td>
<td>32</td>
</tr>
<tr>
<td>Льодяна оцтована кислота</td>
<td>1:1</td>
<td>4 год</td>
<td>Нагрівання</td>
<td>Продукт не виділено</td>
</tr>
<tr>
<td>Льодяна оцтована кислота</td>
<td>1:2</td>
<td>8 год</td>
<td>Кімнатна температура</td>
<td>43</td>
</tr>
<tr>
<td>Діетиловий етер</td>
<td>1:1</td>
<td>8 год</td>
<td>Кімнатна температура</td>
<td>43</td>
</tr>
<tr>
<td>Діетиловий етер</td>
<td>1:1</td>
<td>4 год</td>
<td>Нагрівання</td>
<td>62</td>
</tr>
</tbody>
</table>

© Кут М.М., Кут Д.Ж., Кривов’яз А.О., Описько М.Ю., Лендель В.Г.
DOI: 10.24144/2414-0260.2023.1.57-61
Діетиловий етер 1:2 8 год Кімнатна температура 58
Ацетонітрил 1:1 8 год Кімнатна температура 33
Ацетонітрил 1:1 4 год Нагрівання Продукт не виділено
Ацетонітрил 1:2 8 год Кімнатна температура 41

Висновки
Таким чином, в результаті проведених реакцій між п-метоксифенілтелуртрихлоридом та 5-арилзаміщенними 2-аліліто-1,3,4-оксадіазолами отримано молекулярні аддукти складу субстрат-арилтелуртрихлорид 1:1.

Експериментальна частина
Спектри ЯМР вимірюю на спектрометрі Mercury-400 з робочою частотою для 1H 400 МГц. Точки топлення вимірювали на приладі Stuart Melting Point 30.
n-Метоксифенілтелуртрихлорид одержано за методикою [15]. Синтез 5-(4-нітроfenіл)-1,3,4-оксадіазол-2(3Н)-тиону 1 та 5-(3-нітроfenіл)-1,3,4-оксадіазол-2(3Н)-тиону 2 проводили згідно описаної методики [16].

Загальна методика одержання алілів тіоетерів 3, 4.
До розчину вихідного тіону 1, 2 (6 ммоль), розчиненого в 15 мл водно-спиртового розчину гідроксиду калію (7.2 ммоль), додають 7.2 ммоль аліліборидію в 10 мл етанолу і нагрівають протягом 2 годин. Осад, фільтрують, промивають водно-спиртовим розчином та сушать на повітрі.

2-Аліліто-5-(3-нітроfenіл)-1,3,4-оксадіазол 3. Вихід (62%) $T_{пл.}$ 111-112 °C. 1Н ЯМР (DMSO-d$_6$): δ 8.84 (д, $J = 8.6$ Гц, 2Н), 7.92 (д, $J = 8.2$ Гц, 2Н), 6.02 (м, 1Н), 5.40 (д, $J = 10.0$ Гц, 1Н), 5.19 (д, $J = 11.8$ Гц, 1Н), 4.02 (д, $J = 13.0$ Гц, 2Н). Вираховано, % для C$_{15}$H$_{14}$N$_2$O$_2$: С, 50.18; Н, 3.45; N, 15.96; S, 12.18. Знайдено, %: С, 50.16; Н, 3.40; N, 15.93; S, 12.14.

2-Аліліто-5-(3-нітроfenіл)-1,3,4-оксадіазол 4. Вихід (68%) $T_{пл.}$ 107-108 °C. 1Н ЯМР (DMSO-d$_6$): δ 8.72 (с, 1Н), 7.98 (м, 3Н), 6.00 (м, 1Н), 5.38 (д, $J = 10.0$ Гц, 1Н), 5.21 (д, $J = 11.0$ Гц, 1Н), 4.01 (д, $J = 13.0$ Гц, 2Н). Вираховано, % для C$_{15}$H$_{14}$N$_2$O$_2$: С, 50.18; Н, 3.45; N, 15.96; S, 12.18. Знайдено, %: С, 50.13; Н, 3.41; N, 15.92; S, 12.13.

Загальна методика синтезу комплексів 5, 6.

Комплекс 2-аліліто-5-(4-нітроfenіл)-1,3,4-оксадіазолу з п-метоксифенілтелуртрихлоридом 5. $T_{пл.}$ 72-73 °C. 1Н ЯМР (DMSO-d$_6$): δ 8.84 (д, $J = 8.6$ Гц, 2Н), 8.30 (д, $J = 8.8$ Гц, 2Н), 7.92 (д, $J = 8.2$ Гц, 2Н), 7.15 (д, $J = 8.8$ Гц, 2Н), 5.99 (м, 1Н), 5.38 (д, $J = 10.0$ Гц, 1Н), 5.16 (д, $J = 11.8$ Гц, 1Н), 4.00 (д, $J = 13.0$ Гц, 2Н), 3.81 (с, 3Н). Вираховано, % для C$_{18}$H$_{16}$Cl$_2$N$_2$O$_2$Se: C, 35.77; Н, 2.67; N, 6.95; S, 5.30. Знайдено, %: C, 35.72; Н, 2.61; N, 6.90; S, 5.25.

Комплекс 2-аліліто-5-(3-нітроfenіл)-1,3,4-оксадіазолу з п-метоксифенілтелуртрихлоридом 6. $T_{пл.}$ 86-87 °C. 1Н ЯМР (DMSO-d$_6$): δ 8.72 (с, 1Н), 8.31 (д, $J = 8.8$ Гц, 2Н), 7.98 (м, 3Н), 7.17 (д, $J = 8.8$ Гц, 2Н), 5.99 (м, 1Н), 5.35 (д, $J = 10.0$ Гц, 1Н), 5.18 (д, $J = 11.0$ Гц, 1Н), 3.99 (д, $J = 12.8$ Гц, 2Н), 3.81 (с, 3Н). Вираховано, % для C$_{18}$H$_{16}$Cl$_2$N$_2$O$_2$Se: C, 35.77; Н, 2.67; N, 6.95; S, 5.30. Знайдено, %: C, 35.69; Н, 2.63; N, 6.91; S, 5.26.

Список використаної літератури
This paper describes the synthesis of allylic thioethers of 5-molecules. Therefore, the synthesis of new functional derivatives based on them is an urgent problem. There are well-known examples of the use of oxadiazoles in materials science as high-energy molecules. Therefore, the synthesis of new functional derivatives based on them is an urgent problem. This paper describes the synthesis of allylic thioethers of 5-nitrophenyl-1,3,4-oxadiazole by the alkylation reaction of the corresponding thiones with allyl bromide in an alkaline medium. Such thioethers were studied in reactions with phenylselenothiophosphines, as a result of which

Стаття надійшла до редакції: 22.05.2023.

COMPLEXES OF p-METHOXYPHENYLTETRAMETHYLLUM TRICHLORIDE WITH ALLYL THIOETHERS OF 5-ARYL-1,3,4-OXADIAZOLES

Kut M., Kut D., Krivovraj A., Onysko M., Lendel V.

Uzhhorod National University, Pidhirna St., 46, 88000 Uzhhorod, Ukraine

e-mail: kutmykola@ukr.net

1,3,4-Oxadiazole and its functional derivatives have a wide spectrum of biological activity. There are well-known examples of the use of oxadiazoles in materials science as high-energy molecules. Therefore, the synthesis of new functional derivatives based on them is an urgent problem. This paper describes the synthesis of allylic thioethers of 5-nitrophenyl-1,3,4-oxadiazole by the alkylation reaction of the corresponding thiourea with allyl bromide in an alcohol-alkaline medium. Such thioethers were studied in reactions with phenylselenothiophosphines, as a result of which

© КУТ М.М., КУТ Д.Ж., КРИВОВ’ЯЗ А.О., ОНИСЬКО М.Ю., ЛЕНДЕЛ В.Г.

DOI: 10.24144/2414-0260.2023.1.57-61
oxadiazolo[2,3-d][1,3,4]thiadelenazinium halides were synthesized. We investigated the interaction of the tellurium-containing analogue p-methoxyphenyltellurium trichloride with allyl thioethers of 5-nitrophenyl-1,3,4-oxadiazole. It was established that the reaction between p-methoxyphenyl tellurium trichloride and the investigated alkenyl thioethers within 8 hours occurs with the formation of adducts of the substrate-electrophile composition 1:1, regardless of the ratio of reagents. Attempts to change the polarity of the solvent, increase the reaction time, and change the temperature regime did not change the direction of the reaction. Based on the obtained experimental spectral data and elemental analysis data, the structure of the obtained complexes is proposed.

Keywords: p-methoxyphenyltellurium trichloride; 1,3,4-oxadiazole; allyl thioethers; organotellurium compounds; molecular complexes.

References

© Кут М.М., Кут Д.Ж., Кривов'яз А.О., Описько М.Ю., Лендел В.Г. DO 10.24144/2414-0260.2023.1.57-61