-31-

УДК 544.016.2:(546.683+546.23+546.81)

¹Малаховська Т.О., к.х.н., с.н.с.; ¹Погодін А.І., к.х.н., с.н.с.; ¹Філеп М.Й., к.х.н., с.н.с.; ²Сабов М.Ю., к.х.н., доц.; ²Мункачі О.Й., магістрант; ²Стасюк Ю.М., н.с.; ²Барчій І.Є., д.х.н., проф.

ВИВЧЕННЯ ФІЗИКО-ХІМІЧНОЇ ВЗАЄМОДІЇ В СИСТЕМІ Se–SnSe₂–Tl₂SnSe₃

¹ДВНЗ «Ужгородський національний університет», НДІ Фізики і хімії твердого тіла, 88000, м. Ужгород, вул. Волошина 54; ²ДВНЗ «Ужгородський національний університет», Кафедра неорганічної хімії, 88000, м. Ужгород, вул. Підгірна 46; e-mail: tetyana.malakhovska@uzhnu.edu.ua

Вступ

Актуальним завданням сучасного неорганічного матеріалознавства є пошук нових ефективних термоелектричних матеріалів, що стимулює впровадження енергозберігаючих технологій та створення альтернативних джерел енергії. Класичним термоелектричним матеріалом є плюмбуму (II) телурид РbTe [1]. Однак останні дослідження, провідних закордонних термоелектрики, спеціалістів В галузі показали, що стануму (II) селенід SnSe володіє вищими показниками термоелектричної добротності і є найбільш ефективним серед відомих термоелектриків [2]. Складні халькогеніди р-металів структурного типу Cr₅B₃, які реалізуються в потрійних системах Tl-Sn(Pb)-Se(Te)викликають інтерес значний завдяки поєднанню термоелектричних нелінійно-[3-5] та оптичних [6] властивостей, а також володіють аномально низькими значенням теплопровідності [3-5].

Надійність термоелектричних пристроїв, обумовлена їх конструкційною простотою, активізувала пошук нових речовин, зокрема, складних халькогенідних сполук, які характеризуються доступною технологічністю і хорошою відтворюваністю результатів [7].

Перспективним методом покращення та контролю властивостей функціональних матеріалів є використання не індивідуальних сполук, а різних за складом композитних матеріалів на їх основі [1, 3-5]. Тому, актуальним є цілеспрямована модифікація складу індивідуальної фази для отриманням гомогенних (тверді розчини) або гетерогенних (евтектичні сплави) композитів, шо дозволяє не лише підвищувати ефективність матеріалів, але і здійснювати контроль властивостей. Формування твердих розчинів, шляхом ізовалентної заміни атомами важких металів супроводжується зростанням розсіювання фононів, то за зменшення теплопровідності, рахунок досягти підвищення вдається термоелектричної ефективності матеріалу.

Ефективним шляхом пошуку та одержання нових матеріалів з відтворюваними властивостями є дослідження діаграм стану багатокомпонентних систем. Халькогеніди на основі Талію і елементів головної побічної підгруп IV групи та £ перспективними для використання в якості ефективних термоелектричних матеріалів, на що показали попередні дослідження [8].

Результати аналізу літературних даних показали, що викликає інтерес дослідження квазіпотрійної системи Se-SnSe₂-Tl₂SnSe₃. Оскільки вихідними компонентами системи є бінарний та тернарний селеніди, які проявляють термоелектричні властивості [9, 10], а також мають шарувату структуру, і відповідно анізотропію властивостей [11]. Науково обґрунтованою основою пошуку нових композитних матеріалів, прогнозування їх властивостей і можливих напрямків використання практичного становлять фундаментальні дослідження фізико-хімічної взаємодії у багатокомпонентній системі Se-SnSe₂-Tl₂SnSe₃.

Сторони даної квазіпотрійної системи утворюють дві квазіподвійні Tl₂SnSe₃-Se та SnSe₂–Se, які належать до евтектичного типу з виродженою евтектикою в точці плавлення селену (L↔Tl₂SnSe₃+Se та L↔SnSe₂+Se, при 494 К точка е2), в інтервалі концентрацій системи Tl₂SnSe₃-Se від 20 до 60 мол. % Tl₂SnSe₃ спостерігається розшаруванням в рідкій фазі; а також квазіподвійна система характеризується SnSe₂-Tl₂SnSe₃, яка утворенням проміжної тернарної сполуки Tl₂Sn₂Se₅ – за перитектичною реакцією $L+SnSe_2\leftrightarrow Tl_2Sn_2Se_5$ при 732 К _ i нонваріантним евтектичним процесом $L \leftrightarrow Tl_2SnSe_3 + Tl_2Sn_2Se_5$ (координати евтектики e1: 62 моль% SnSe₂, 723 K) [12-15]. Сполука Tl₂Sn₂Se₅ є нестійкою і твердофазно розкладається при 655 K за реакцією Tl₂Sn₂Se₅↔Tl₂SnSe₃+SnSe₂.

У загальній квазіпотрійній системі Se– SnSe₂–Tl₂SnSe₃ утворюються граничні тверді розчини на основі елементарного Se, бінарного SnSe₂, тернарних сполук Tl₂SnSe₃ та Tl₂Sn₂Se₅ [16]. Завдяки тому, що переріз Se–Tl₂Sn₂Se₅ є частково квазібінарним, він умовно поділяє вихідну квазіпотрійну систему SnSe₂–Tl₂SnSe₃–Se на дві вторинні часткові системи Tl₂Sn₂Se₅–Tl₂SnSe₃–Se і SnSe₂–Tl₂Sn₂Se₅–Se.

Експериментальна частина

Синтез вихідних бінарної, тернарної ряду сплавів квазіпотрійної сполук та Se-SnSe₂-Tl₂SnSe₃ системи здійснювали методом у прямим однотемпературним вакуумованих до 0.13 Па кварцових ампулах трубчатій електричній печі опору. У Регулювання i контроль температури проводили допомогою хромельза алюмелевої термопари електронної та РИФ-101, регулюючої системи що забезпечувала програмований режим нагрівання і охолодження печі. В якості вихідних речовин використовували елементарні та бінарні компоненти. Компоновку вихідних речовин здійснювали на електронних вагах AD-200 AXIS з точністю до 1×10-3 г. Необхідні кількості вихідних речовин ретельно перемішували, завантажували в ампули, відкачували до 0.13 Па і запаювали.

Режим синтезу підбирали на основі властивостей фізико-хімічних вихідних продуктів їх взаємодії: компонентів та температуру підвищували із швидкістю 40-60 К/год до максимальної температури 50-70 К перевищувала синтезу, яка на температуру плавлення найбільш тугоплавкого компонента. При цій температурі (витримка протягом 24 год.) всі компоненти і продукти взаємодії знахолилися в розплавленому вигляді, що обумовлювало завершення хімічної взаємодії з утворенням необхідних фаз. Охолодження до експериментально підібраної (або на підставі відомих діаграм стану) температури відпалу здійснювали із швидкістю 20-30 К/год. Відпал проводили при температурі 433 К протягом 168 год. Після відпалу усі сплави загартовували у льодяній воді.

Дослідження сплавів систем проводили методами диференційного термічного аналізу (ДТА) (хромель-алюмелева диференціальна термопара, мікропроцесорний регулятор температур RE-205 з тиристорами ВТА 40-800В) та рентгенівського фазового аналізу РФА, (дифрактометр ДРОН 4-07, випромінювання СиК_а Ni - фільтр).

кристалізацій Поля первинних вихідних селенідів (кристалів на основі елементарного Se, кристалів на основі бінарного SnSe₂, тернарних сполук Tl₂SnSe₃ та Tl₂Sn₂Se₅) а також детальний хід ліній моноваріантних рівноваг у квазіпотрійній системі визначали на основі термічного аналізу із залученням методів математичного моделювання [17]. Проведені дослідження дали можливість вивчити характер фізикохімічної взаємодії у квазіпотрійній системі Se–SnSe₂–Tl₂SnSe₃, вперше побудувати проекцію поверхні ліквідусу на концентраційний трикутник (рис. 1), просторові діаграми стану вторинних систем Tl₂Sn₂Se₅-Tl₂SnSe₃-Se (рис. 2) та SnSe₂-Tl₂Sn₂Se₅-Se (рис. 3).

Результати та їх обговорення.

Ліквідус системи Se–SnSe₂–Tl₂Sn₂Se₅ (рис. 1, 2) складається з поля первинної кристалізації на основі вихідного бінарного станум (IV) селеніду.

-32-

-33-

системи Se-SnSe₂-Tl₂SnSe₃.

Об'єм первинних виділень фази на основі SnSe₂ (L+SnSe₂) зверху обмежений поверхнею ліквідусу А'D'sC'A', знизу – двома поверхнями d1d6a6a1d1 та d6sc1a6d6. Трифазні області L+SnSe₂+Se L+SnSe₂+Tl₂Sn₂Se₅ (відповідають об'ємам виділень) вторинних обмежуються поверхнями d6sc1a6d6, d6sc1d6 $(L+SnSe_2+Se)$ i d1d6d3d1, d1d6a6a1d1, d3d6a6d3 (L+SnSe₂+Tl₂Sn₂Se₅) (рис. 2) та розділені між собою лінією d6-а6.

Нижні сторони об'ємів вторинних виділень утворюють поверхню нонваріантперитектичного перетворення ного d3d6c1a6d3, на якій проходить процес L+SnSe₂↔Se+Tl₂Sn₂Se₅ при 585 К (є частиною загальної перитектичної площини d3Uc1a6d3 квазіпотрійної системи SnSe₂-Tl₂SnSe₃–Se (рис. 2-3)). Нижче за перитектичну площину трифазна область є сумішшю фаз на основі Se-, SnSe₂- та $Tl_2Sn_2Se_5$ кристалів. Площина а7d4c2a7 відповідає процесу твердофазного розкладу сполуки $Tl_2Sn_2Se_5 \leftrightarrow SnSe_2 + Tl_2SnSe_3$ Tl₂Sn₂Se₅: при 407 К. Тому нижче за неї тверда фаза складається із Se-, SnSe₂- та Tl₂SnSe₃кристалів.

Область гомогенності станум (IV) селеніду обмежена поверхнями A'a1a2a3AA', A'a4a5AA', A'a4a6a1A', a1a6a7a2a1, a4a6a7a8a5a4, a2a7a8a3a2, елементарного селену – C'c3CC', C'c1c2c4CC', C'c1c2c3CC'. Сполука $Tl_2Sn_2Se_5$ існує в температурному інтервалі 732–655 К і її область обмежена площинами d1d2d4d3d1, d1d3d4d2d1, d1d2d1.

Рис. 2. Діаграма стану часткової квазіпотрійної системи Se–SnSe₂–Tl₂Sn₂Se₅.

Часткова система Se-Tl₂SnSe₃-Tl₂Sn₂Se₅ характеризується більш складною фізико-хімічною взаємодією (рис. 3).

Рис. 3. Діаграма стану часткової квазіпотрійної системи Se-Tl₂Sn₂Se₅-Tl₂SnSe₃.

В системі відбуваються нонваріантні перитектичний процес L+SnSe₂ \leftrightarrow Se+Tl₂Sn₂Se₅ при 585 К (площина d3Uc1d3) та евтектичний процес L \leftrightarrow Se+Tl₂SnSe₃+Tl₂Sn₂Se₅ при 475 К (площина d8b5c8d8). Площина d4b6c2d4 є продовженням площини a7d4c2a7 (системи SnSe₂– Tl₂Sn₂Se₅–Se (рис. 2) і відповідає процесу твердофазного розкладу сполуки Tl₂Sn₂Se₅: Tl₂Sn₂Se₅ \leftrightarrow SnSe₂+Tl₂SnSe₃ при 407 К.

Ліквідус системи Se–Tl₂Sn₂Se₅–Tl₂SnSe₃ утворюють чотири поверхні первинних кристалізацій C'sEC' (елементарного Se), D'p1UsD' (бінарного станум (IV) селеніду -34-

SnSe₂), ple1Up1 (тернарної сполуки Tl₂Sn₂Se₅) та B'e1UEC'm2m1B' (тернарної Tl_2SnSe_3) (рис. 1, 3). сполуки Поверхні первинних кристалізацій поділені між собою лініями моноваріантних рівноваг s–E процес $L \leftrightarrow SnSe_2 + Se)$, (рівноважний U–E (рівноважний процес $L \leftrightarrow SnSe_2 + Tl_2SnSe_3$), p1-U(рівноважний процес L+SnSe₂ \leftrightarrow Tl₂Sn₂Se₅), e1–U (рівноважний процес $L \leftrightarrow Tl_2SnSe_3 + Tl_2Sn_2Se_5$), C'(e2)-E (рівноважний процес L↔Tl₂SnSe₃+Se).

Солідус системи утворюється нонваріантною евтектичною площиною d8b5c8d8, поверхнями закінчення первинних кристалізацій елементарного Se (C'c1c8C'), тернарної фази Tl₂SnSe₃ (B'b1b5b3B'), сполуки Tl₂Sn₂Se₅ (d1d7d8d4d2d1), а також поверхнями закінчення сумісних кристалізацій Tl₂SnSe₃+Se (b4b5Ec8C'b4), Se+Tl₂Sn₂Se₅ (d7d8Ec8d8)та Tl₂SnSe₃+Tl₂Sn₂Se₅ (b1b5Ed8d7b1). Область гомогенності елементарного Se обмежена поверхнями С'с8с2с4СС', С'с6СС' С'с1с6С', с2с7с4с2, с1с6с2с8с1, а тернарної сполуки B'b3b4b8BB', B'b1b2b7BB', Tl₂SnSe₃ _ B'b1b5b3B', b1b5b6b2b1, b3b4b5b3, b4b6b5b4, b4b6b9b8b4, b2b7b9b6b2. Завдяки утворенню за перитектичною реакцією і твердофазному розкладу тернарна сполука $Tl_2Sn_2Se_5$ існує обмеженому в температурному інтервалі та ïï об'єм обмежений поверхнями d1d7d2d1, d1d3d4d2d1, d1d3d8d7d1, d7d8d4d2d7. Нижче температури евтектичної площини і вище за площину твердофазного розкладу сполуки Tl₂Sn₂Se₅ тверда фаза складається з кристалів фаз Se, Tl₂SnSe₃ та сполуки Tl₂Sn₂Se₅, так як перитектичний процес L+SnSe₂↔Tl₂Sn₂Se₅ відбувається з повним вичерпанням кристалів бінарного селеніду (SnSe₂).

Квазіпотрійна система SnSe₂-Tl₂SnSe₃-Se характеризується наступними рівноважними процесами:

• нонваріантний процес плавлення SnSe₂ (точка А') – SnSe_{2(sol)}↔SnSe_{2(liq)} (948 K);

• нонваріантний процес плавлення Se (точка C') – Se_(sol)↔Se_(liq) (495 K);

 нонваріантний процес плавлення Tl₂SnSe₃ (точка B') – Tl₂SnSe_{3(sol)} ↔Tl₂SnSe_{3(liq)} (732 K);
нонваріантний процес утворення Tl₂Sn₂Se₅ (точка d1) – L+SnSe₂ ↔Tl₂Sn₂Se₅ (732 K); нонваріантний процес розкладу Tl₂Sn₂Se₅ (точка d2) – Tl₂Sn₂Se₅↔SnSe₂+Tl₂SnSe₃
(655 K);

• потрійний нонваріантний евтектичний процес (точка Е) – L↔Se+Tl₂SnSe₃+Tl₂Sn₂Se₅ (475 K);

• потрійний нонваріантний перитектичний процес (точка U) – L+SnSe₂↔Tl₂SnSe₃+Tl₂Sn₂Se₅ (585 K);

• подвійний нонваріантний евтектичний процес (точка e1) – $L \leftrightarrow Tl_2SnSe_3+Tl_2Sn_2Se_5$ (723 K);

• подвійний нонваріантний евтектичний процес (точка С', e2) – L↔Se+Tl₂SnSe₃ (495 K);

• подвійний нонваріантний евтектичний процес (точка С', е2) – L↔Se+SnSe₂ (495 K);

• подвійний нонваріантний перитектичний процес (точка p1) – L+SnSe₂↔Tl₂Sn₂Se₅ (732 K);

 моноваріантний евтектичний процес (лінія e1–U) L↔Tl₂SnSe₃+Tl₂Sn₂Se₅ (723–475 K);

• моноваріантний евтектичний процес (лінія C'(e2)–E) – L↔Tl₂SnSe₃+Se (495–475 К);

 моноваріантний евтектичний процес (лінія U–E) – L⇔Se+Tl₂Sn₂Se₅ (585–475 К);

 моноваріантний перитектичний процес (лінія p1–U) – L+SnSe₂↔Tl₂Sn₂Se₅ (732– 585 K);

 моноваріантний евтектичний процес (лінія C'(e2)–s-E) – L↔SnSe₂+Se (495–585 K).

Лінії моноваріантних рівноваг квазіпотрійної системи $SnSe_2-Tl_2SnSe_3-Se$ сходяться в двох нонваріантних точках: потрійній перитектичній U (66.6 мол% Se, 19.3 мол% Tl_2SnSe_3 , 14.1 мол% $SnSe_2$, 585 K) та евтектичній E (82.6 мол% Se, 10.1 мол% Tl_2SnSe_3 , 7.3 мол% $SnSe_2$, 475 K) (рис. 1).

ΡΦΑ Результати ДТА, та математичного моделювання дали можливість вивчити характер фізико-хімічної взаємодії в квазіпотрійній системі Se-SnSe2-Tl₂SnSe₃, побудувати проекцію поверхні ліквідусу на концентраційний трикутник та просторову діаграму стану системи, встановити координати нонваріантних точок (потрійної перитектичної та евтектичної), а також детальний хід ліній моноваріантних рівноваг.

Список використаних джерел

1. Бойко М.І., Левицький С.М., Власенко О.І., Криськов Ц.А. Розробка та дослідження термоелектричних модулів на основі РbTe. Фізика і хімія твердого тіла. 2011, 12(3), 777–781.

2. Zhao L.-D., Tan G., Hao S., He J., Pei Y., Chi H., Wang H., Gong S., Xu H., Dravid V.P., Uher C., Snyder G.J., Wolverton C., Kanatzidis M.G. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. *Science*. 2016, 351, 141–145.

3. Kuropatwa B.A., Assoud Abdeljalil, Kleinke H. Phase range and physical properties of the thallium tin tellurides $Tl_{10-x}Sn_xTe_6$ (x \leq 2.2). *J. Alloys Compd.* 2011, 509, 6768–6772.

4. Guo Q., Assoud A., Kleinke H. Improved bulk materials with thermoelectric figure-of-merit greater than 1: $Tl_{10-x}Sn_xTe_6$ and $Tl_{10-x}Pb_xTe_6$. *Adv. Energy Mater.* 2014, 4(14), 1400348.

5. Kosuga A., Kurosaki K., Muta H., Yamanaka S. Thermoelectric properties of Tl–X–Te (X=Ge, Sn, and Pb) compounds with low lattice thermal conductivity. *J. Appl. Phys.* 2006, 99, 063705 (1–4).

6. Barchij I., Sabov M., El-Naggar A.M., Al Zayed N.S., Albassam A.A., Fedorchuk A.O., Kityk I.V. Tl₄SnS₃, Tl₄SnSe₃ and Tl₄SnTe₃ crystals as novel IR induced optoelectronic materials. *J. Mater. Sci.: Mater. Electron.* 2016, 27, 3901–3905.

7. Mcguire M.A., Reynolds T.K., Disalvo F.J. Exploring thallium compounds as thermoelectric materials: Seventeen new thallium chalcogenides. *Chem. mater.* 2005, 17(11), 2875–2884.

8. Малаховська Т.О., Глух О.С., Сабов М.Ю., Барчій І.Є., Переш Є.Ю. Термоелектричні властивості монокристалів сполук Tl₄SnS₄(Se₄) та Tl₂SnS₃(Se₃). *Укр. хим. журн.* 2009, 75(5), 25–27.

9. Yixuan Wu, Wen Li, Alireza Faghaninia, Zhiwei Chen, Juan Li, Xinyue Zhang, Bo Gao, Siqi Lin, Binqiang Zhou, Anubhav Jain, Yanzhong Pei.

Стаття надійшла до редакції: 23.11.2018.

Promising thermoelectric performance in van derWaals layered SnSe₂. *Materials Today Physics*. 2017, 3, 127–136.

10. Малаховська Т.О., Сабов М.Ю., Барчій І.Є., Переш Є.Ю. Фазові рівноваги в системі Tl₂Se-SnSe, одержання та властивості монокристалів сполуки Tl₄SnSe₃. *Укр. хим. журн.* 2009, 75(2), 89–91.

11. Bao-Zhen Sun, Zuju Ma, Chao He, Kechen Wu. Anisotropic thermoelectric properties of layered compounds in SnX_2 (X = S, Se): a promising thermoelectric material. *Phys. Chem. Chem. Phys.* 2015, 17, 29844-29853.

12. Малаховська Т.О., Янкович О.М., Сабов М.Ю., Переш Є.Ю. Тріангуляція системи Tl–Sn–Se. *Наукјdbq вісник Волинського ун-ту. Серія* "*Хімія*". 2008, 13, 16–20.

13. Караханова М.И.,. Пашинкин А.С. Новоселова А.В. О диаграмме плавкости системы олово – селен. *Изв. АН СССР. Неорган. матер.* 1966, 2, 1186–1189.

14. Barchii I.E., Malakhovskaya-Rosokha T.A., Sabov M.Y., Filep M.Y., Peresh E.Y. Physicochemical interaction in the TlSe–Tl₂SnSe₃–Se quasi-ternary system. *Russ. J. Inorg. Chem.* 2013, 58(1), 88–90.

15. Переш Е.Ю., Лазарев В.Б., Староста В.И. Свойства соединений, образующихся в системах $Tl_2C^{VI}-B^{IV}C^{VI}_2$. *Неорган. матер.* 1986, 22(12), 1967–1971.

16. Малаховська-Росоха Т. О. Системи Tl–Sn(Pb)– S(Se,Te): фазові рівноваги, одержання монокристалів тернарних сполук та їх властивості: Дис. канд. хім. наук: 02.00.01, ДВНЗ «УжНУ». Ужгород, 2010.

17. Барчій І.Є. Математичне моделювання фазових рівноваг у квазітернарній системі Tl₂S–Tl₂Se–Tl₅Se₂I *Укр. хим. журн.* 2001, 67(11), 18–23.

-36-

STUDY OF THE PHYSICO-CHEMICAL INTERACTION IN THE Se-SnSe₂-Tl₂SnSe₃ SYSTEM

Malakhovska T.O., Pogodin A.I., Filep M.J., Sabov M.Yu., Munkachi O.J., Stasyuk, Yu M., Barchiy I.E.

One of the ways to finding and obtaining new materials with reproducible properties is to study the phase diagrams of multicomponent systems. Thallium based complex chalcogenides belong to promising and effective thermoelectric materials. The results of the analysis of literary data have shown that the investigation of quasi-ternary systems Se–SnSe₂–Tl₂SnSe₃ is expedient. It's due to that the initial binary and ternary phases show thermoelectric properties and have a layered structure.

The Se–SnSe₂–Tl₂SnSe₃ system is formed by Tl₂SnSe₃–Se, SnSe₂–Se and SnSe₂–Tl₂SnSe₃ sections which are characterized by passing of a eutectic process. In the Tl₂SnSe₃–Se system an immiscibility region exists in the range 20–60 mol. % Tl₂SnSe₃. The SnSe₂–Tl₂SnSe₃ system is characterized by the formation of a ternary compound Tl₂Sn₂Se₅ by peritectic reaction L + SnSe₂ \leftrightarrow Tl₂Sn₂Se₅ at 732 K which solidly decomposes at 655 K by the Tl₂Sn₂Se₅ \leftrightarrow Tl₂SnSe₃ + SnSe₂ reaction. Due to the partial quasi-binarity of Se–Tl₂SnSe₃ section it divides the general system Se–SnSe₂–Tl₂SnSe₃ into two secondary systems Tl₂Sn₂Se₅–Tl₂SnSe₃–Se and SnSe₂–Tl₂Sn₂Se₅–Se.

For the investigation of the physico-chemical interaction in the Se–SnSe₂–Tl₂SnSe₃ a synthesis of a number of points were carried out. All synthesis was carried out from high purity elementary components and pre-synthesized binary compounds in vacuumed (0.13 Pa) quartz ampoules by one-temperature direct method. The maximal temperature of synthesis exceeds by 50-70 K the melting point of the most refractory component. The annealing was carried out during 168 h at the temperature 433 K.

Based on the results of the DTA and XRD the physicochemical interaction in the Se–SnSe₂–Tl₂SnSe₃ system was investigated. Using the temperatures of the primary crystallization of alloys by mathematical modeling the projection of liquidus surface of the Se–SnSe₂–Tl₂SnSe₃ system was investigated and builds for the first time. Established that the four fields of primary crystallization of initial phases are divided by five monovariant lines which cross in one invariant peritectic point U (66.6 mol.% Se, 19.3 mol.% Tl₂SnSe₃, 14.1 mol.% SnSe₂, 585 K) and one invariant eutectic point E (82.6% mol.% Se, 10.1 mol.% Tl₂SnSe₃, 7.3 mol.% SnSe₂, 475 K).

For the first time the dimensional phase diagrams of the partial $Se-SnSe_2-Tl_2Sn_2Se_5$ and $Se-Tl_2Sn_2Se_5-Tl_2SnSe_3$ systems were build.

Keywords: Chalcogenides; Thermal analysis; X-ray diffraction; Projection of liquidus surface