-5-

УДК: 546.57+546.18+546.23+548.3+535.915

Сабов В.І., PhD., Погодін А.І., к.х.н., доц., Сабов М.Ю., к.х.н., доц., Барчій І.Є., д.х.н., проф., Студеняк Я.І., к.х.н., доц., Гаврильцо Г.Ю., асп., Стерчо О.О., студ.

ВИВЧЕННЯ ЗОННОЇ СТРУКТУРИ Ag₂Se, Sb₂Se₃, AgSbP₂Se₆

Ужгородський національний університет, Україна, м.Ужгород, вул.Підгірна 46, igor.barchiy@uzhnu.edu.ua

Рентгенівським методом порошку проведено вивчення кристалічної структури сполуки AgSbP₂Se₆ Кристалохімічні структурні розрахунки з використанням програмного комплексу EXPO–CCP14 показали, що сполука AgSbP₂Se₆ кристалізується у тригональній сингонії, ПГ *R*-3, параметри елементарної комірки a = 6.61573 Å, c = 39.86223 Å, V=1510.94 Å³, Z=6.

Здійснено кристалохімічний аналіз структур складних селенідів Ag₂Se, Sb₂Se₃, AgSbP₂Se₆. Сполука Ag₂Se (низькотемпературна модифікація) кристалізується в орторомбічній сингонії ($P2_12_12_1$). Катіони Ag⁺ зв'язані у 3-координатній геометрії з трьома еквівалентними аніонами Se²⁻. Аніони Se²⁻ координують навколо себе шість Ag⁺. Sb₂Se₃ кристалізується в орторомбічній сингонії (*Pnma*) із слабо вираженою шаруватою 2D-структурою. Катіони Sb³⁺ знаходяться у двох нееквівалентних позиціях: у першій утворює деформовані октаедри [SbSe₆], у другій квадратні піраміди [SbSe₅]. Кристалічна структура сполуки AgSbP₂Se₆ (*R-3*) характеризується утворенням шарів із аніонних груп атомів [P₂Se₆]⁴⁻. У просторі між аніонними групами почергово розміщаються катіони Ag⁺, Sb³⁺, які знаходяться в октаедричній координації з Se²⁻. Катіони Sb³⁺ розташовані на одній площині з центрами зв'язків P–P аніонних груп [P₂Se₆]⁴⁻, катіони Ag⁺ у незначній мірі зміщені відносно даної площини.

Вивчення оптичних спектрів поглинання монокристалу AgSbP₂Se₆ показало, що для нього характерним є прямозонний дозволений тип провідності, ширина забороненої зони становить E_g =1.49 eB (методом Тауца на основі $(ahv)^2 = f(hv) E_g$ =1.48 eB). Ab initio квантовохімічні розрахунки електронної структури з використанням програмного пакету Quantum Espresso (QE) на основі теорії функціоналу густини (DFT) показали, що складні селеніди Ag₂Se, Sb₂Se₃, AgSbP₂Se₆ характеризується прямозонним типом провідності, ширина оптичної забороненої зони E_g = 0.05 eB (Ag₂Se), E_g = 0.87 eB (Sb₂Se₃), E_g = 1.42 eB (AgSbP₂Se₆), енергія Фермі $E_{\Phi epмi}$ =9.75 eB (Ag₂Se), $E_{\phi epmi}$ =6.12 eB (Sb₂Se₃), $E_{\phi epmi}$ =5.34 eB (AgSbP₂Se₆). Оптична заборонена зона (E_g) сполук Sb₂Se₃, AgSbP₂Se₆ формується переходами електронів Se 4 $p \rightarrow$ Sb 5p, для сполуки Ag₂Se Se 4 $p \rightarrow$ Ag 5s.

Ключові слова: селеніди; кристалічна структура; Ab initio розрахунки; зонна структура.

Основним науковим завданням сучасного матеріалознавства, яке стимулюється розвитком високих технологій, є пошук нових функціональних матеріалів з комплексом необхідних електрофізичних, оптичних властивостей. Серед великого класу напівпровідникових сполук складні халькогенідні матеріали знайшли практичне використання в якості робочих елементів термоелектрики та фотовольтики [1-7]. В останні роки особлива увага приділяється складним гексеселенодифосфатним сполукам типу M₂P₂Se₆, які завдяки своїй кристалічній

структурі характеризуються анізотропію фізичних властивостей та володіють перспективними властивостями феромагнітними, термоелектричними, оптичними [8-12]. Ізовалентна заміна у складі M^{2+} сполук M₂P₂Se₆ металу на лва різнойменні катіони $M1^+$ (Na⁺, K⁺, Rb⁺, Cs⁺, Ag⁺, Cu⁺, Tl⁺) та M2³⁺ (In³⁺, Ga³⁺, As³⁺, Sb³⁺, Bi^{3+} , перехідні метали Sc^{3+} , V^{3+}) дозволяє розширити коло нових матеріалів та покращити їх властивості.

Подвійна	система	Ag–Se
характеризується	утворенням	при

співвідношенні 2:1 проміжної бінарної сполуки Ag₂Se (плавиться конгруентно при при 1170 К) [13-15]. Одержують Ag₂Se шляхом прямого синтезу у вакуумованих кварцових ампулах у стехіометричних елементарних кількостях вихідних компонентів при 1203 К з подальшим розплаву охолодженням [13]. Кристалізується у орторомбічній сингонії $(P2_12_12_1)$ [16], за температур вищих ніж 400 К утворює кристали кубічної сингонії (*Im3m*) [17]. Функціональні матеріали на основі селеніду аргентум (I) характеризуються високими показниками іонної провідності за рахунок розупорядкування ioнiв Ag⁺ у катіонній підгратці, вищими значеннями іонності зв'язків Ад-Se відносно М-Те. Це робить ïχ перспективними термоелектричними матеріалами для генерації електричної енергії з тепла та фотовольтики [18-20].

Sb–Se Система характеризується утворенням однієї сполуки Sb₂Se₃, яка плавиться конгруентно при 863 К [21]. Sb₂Se₃ кристалізується в орторомбічній сингонії (Рпта) [22,23]. Подвійні напівпровідники Sb₂Se₃ є перспективними поглинаючими матеріалами фотоелектричних елементів завдяки їхнім привабливим анізотропним оптоелектронним властивостям [24-26]. Отримані тонкоплівкові сонячні елементи на основі дають ефективність Sb₂Se₃ перетворення потужності 10.12 % завдяки пригніченій рекомбінації носіїв, хорошому транспорту та екстракції носіїв.

Представники класу гексаселенодифосфатів AgSbP₂Se₆, (похідні від Sn₂P₂Se₆) володіють спектром нелінійнооптичних, сцинтиляційних, фотокаталітичних властивостей [12,27-31].

З метою встановлення закономірностей зміни зонної структури при переході від подвійних аргентум- та стибій-вмісних селенідів до почетверної сполуки AgSbP₂Se₆ у даній роботі представлені результати аналізу їх кристалохімічних характеристик та вивчення електронної будови.

Експериментальна частина

Для сполуки AgSbP₂Se₆ ідентифікацію проведено рентгенівським методом порошку на автоматичному дифрактометрі ДРОН 4-07 (випромінювання Си *K*α, Ni-фільтр, діапазон

сканування $10 \le 2\theta \le 90^\circ$, крок сканування 0.05, час експозиції в точці 10 сек). Кристалохімічні розрахунки будови сполуки AgSbP₂Se₆ здійснювали з використанням програмного комплексу EXPO–CCP14 [32], аналіз даних з використанням комплексу програм Vesta 3 [33] та Daimond 2 [34].

Спектри пропускання одержували на спектрофотометрі Shimadzu UV-2600 (програмне забезпечення UVProbe) з інтегруючою сферою ISR-2600Plus, діапазон вимірювання 220 ÷ 1400 нм, крок сканування 1 нм. Для встановлення значень ширини забороненої зони використовували метод Тауца [35]:

$$(\alpha h\nu)^{1/n} = A(h\nu - E_g)$$

де h – постійна Планка, v – частота фотону, α –коефіцієнт поглинання, E_g – ширина забороненої зони, А – константа пропорційності.

Ab initio квантово-хімічні розрахунки електронної структури всіх сполук програми здійснювали за допомогою Quantum Espresso (QE), який містить основні пакети обчислень електронної структури в межах теорії функціоналу густини (DFT) [36,37]. Геометричну оптимізацію структури сполук здійснювали ітераційним методом самоузгодженого поля (SCF) на основі алгоритму Брюдена-Флетчера-Гольдфарба-Шанно (BFGS). Для реалізації розрахунків використовували програму BURAI 1.3.2 з відкритим колом. яка € графічним інтерфейсом (GUI) Quantum Espresso для Windows.

Результати та їх обговорення

Дослідження кристалічної структури Ag₂Se представлені в роботах [16,17], Sb₂Se₃ [22,23]. У таблиці 1 наведено кристалохімічні параметри складних селенідів, на Рис.1 представлено будову їх елементарних комірок.

Аналіз кристалохімічних даних показав, що у кристалічній гратці нтм- Ag_2Se ($P 2_12_12_1$) існують дві нееквівалентні позиції, які займають катіони Ag^+ (Рис.2). У першій Ag1 зв'язаний у 3-координатній геометрії з трьома еквівалентними аніонами Se^{2-} (міжатомні відстані зв'язків Ag–Se складають 2.658÷2.861 Å). У другій позиції Ag2 зв'язаний у 3-координатній геометрії з трьома еквівалентними аніонами Se²⁻ (міжатомні відстані зв'язків Ag–Se складають

2.686÷2.798 Å). Se²⁻ зв'язаний у 6-координатній геометрії з шістьма катіонами Ag^+ .

Таблиця 1. Кри	исталохімічні	структурні і	араметри сполу	к Ag ₂ Se,	Sb_2Se_3 ,	AgSbP ₂ Se ₆ .
----------------	---------------	--------------	----------------	-----------------------	--------------	--------------------------------------

	1,2	71 1	
Сполука	Сингонія	Пр.гр.	Параметри елементарної комірки
нтм-Ag ₂ Se [16]	орторомбічна	$P2_{1}2_{1}2_{1}$	a=4.45 Å, b=7.08 Å, c=7.66 Å, V=241.28 Å ³ , Z=4
втм-Ад ₂ Se [17]	кубічна	Im3m	a=5.4 Å, V=128.25 Å ³ , Z=2
Sb ₂ Se ₃ [22,23]	орторомбічна	Pnma	a=11.794(1) Å, $b=3.986(1)$ Å, $c=11.648(1)$ Å,
			V=547.58 ų, Z=4
AgSbP ₂ Se ₆	тригональна	R-3	$a = 6.61573 \text{ Å}, c = 39.86223 \text{ Å}, V = 1510.94 \text{ Å}^3, Z = 6$

Рис.1. Будова елементарної комірки сполук нтм-Ag₂Se, Sb₂Se₃, AgSbP₂Se₆

Sb₂Se₃ кристалізується в орторомбічній сингонії (Рис.1). Структура є 2D-вимірною, слабо шаруватою і складається з двох шарів Sb_2Se_3 , орієнтованих у напрямку (0,1,0). Sb^{3+} y знаходиться двох нееквівалентних позиціях. У першій позиції Sb³⁺зв'язується з аніонами Se^{2–}, утворюючи шістьма спотворені октаедри SbSe₆, які мають спільні кути з двома еквівалентними квадратними пірамідами SbSe₅, ребра з чотирма еквівалентними октаедрами SbSe₆ і ребра з еквівалентними квадратними трьома пірамідами SbSe₅. Довжина відстаней зв'язку Sb-Se складає 2.663÷3.215 Å (Рис.2). У другій позиції Sb³⁺ зв'язується з п'ятьма аніонами Se²⁻, утворюючи квадратні піраміди SbSe₅, які мають спільні кути з двома еквівалентними октаедрами [SbSe₆], ребра з трьома еквівалентними октаедрами SbSe₆ і ребра з чотирма еквівалентними квадратними пірамідами [SbSe₅]. Міжатомні відстані зв'язку Sb-Se знаходяться в діапазоні від 2.589÷3.007 Å. Селен знаходиться у трьох нееквівалентних позиціях. У першій та другій позиціях Se²⁻ зв'язаний у 3-координатній геометрії з трьома еквівалентними катіонами Sb³⁺. У третій позиції Se²⁻ зв'язується з п'ятьма катіонами Sb³⁺, утворюючи викривлені квадратні піраміди SeSb₅ зі спільними краями (Рис.3).

Кристалохімічні розрахунки будови сполуки AgSbP₂Se₆ здійснювали 3 використанням програмного комплексу EXPO-CCP14. Розраховані параметри кристалічної гратки представлені в таблиці 1, просторове укладання катіонів Ag⁺, Sb³⁺ та аніонної $[P_2Se_6]^{4-}$ групи, координаційне оточення атомів Ag, Sb, Р та міжатомні відстані у кристалічній гратці на Рис.5. Проведені розрахунки показали, що сполука AgSbP₂Se₆ кристалізується в тригональній сингонії (R-3). Атоми аргентуму, стибію і двох типів фосфору займають різні позиції 6с Wyckoff, тоді як атомами селену заповнюють дві різні позиції 18f (таблиця 2).

У кристалічний структурі сполуки AgSbP₂Se₆ можна виділити аніонну групу атомів [P₂Se₆]⁴⁻ у вигляді двох зрощених тетраедрів, які утворюють шари вздовж осі у (Рис.5). Катіони Ag⁺, Sb³⁺ розташовуються всередині шарів почергово в просторі між аніонними групами. Міжатомні відстані між атоми P–Se у зрощених тетраедрах [P₂Se₆] різняться (відстань P–Se1 2.321 Å, P–Se2 2.478 Å), що пов'язано із різним оточенням Se²⁻ катіонами Ag⁺ та Sb³⁺ і вказує на трансвплив у системі зв'язків P–Se–Ag та P–Se–Sb. Катіони Sb³⁺ знаходяться на межі поділу тетраедричних та октаедричних порожнин, катіони Ag⁺ зміщуються в бік октаедричних порожнин. Катіони Sb³⁺ розташовані на одній площині з центрами зв'язків P–P аніонних груп $[P_2Se_6]^{4-}$, катіони Ag⁺ зміщені у незначній мірі відносно даної площини. Катіони Sb³⁺ координують навколо себе шість іонів Se²⁻, міжатомні відстані складають Sb–Se 2.683÷2.817 Å. Катіони Ag⁺ також координують навколо себе шість іонів Se²⁻утворюючи дещо деформований октаедр, міжатомні відстані складають Ag–Se 2.762÷2.999 Å (Рис.5).

Рис.2. Координаційне оточення атомів Ag, Se та міжатомні відстані у кристалічній гратці сполуки Ag₂Se

Рис.3. Координаційне оточення атомів Sb, Se та міжатомні відстані у кристалічній гратці сполуки Sb_2Se_3

Таблиця.2. Параметри та теплові поправки атомів у структурі сполуки AgSbP₂Se₆ (*R*-3, фактори збіжності R_p =4.028, R_{wp} =5.585).

	P	, wp ,				
Атом	Позиція	x/a	y/b	z/c	B(is/eq)	SOF
Ag1	6с	0.3333	0.6667	0.0860	5.363	1.000
Sb1	6с	0.0000	0.0000	0.0910	6.380	1.000
Se1	18f	0.3260	0.3350	0.1288	0.500	1.000
Se2	18f	0.3207	0.0142	0.0395	0.500	1.000
P1	6с	0.6667	0.3333	0.0689	0.500	1.000
P2	6с	0.6667	0.3333	0.1171	0.500	1.000

Рис.4. Експериментальна (синя), теоретична (червона) та різницева (фіолетова) дифрактограми сполуки AgSbP₂Se₆ (*R*-3)

Рис.5. Просторове укладання катіонів Ag⁺, Sb³⁺ та аніонної [P₂Se₆]^{4–} групи, координаційне оточення атомів Ag, Sb, P та міжатомні відстані у кристалічній гратці сполуки AgSbP₂Se₆

При переході від Ag₂Se до AgSbP₂Se₆ спостерігається незначне зростання довжини зв'язків Ag–Se від 2.658÷2.861 Å ЛО 2.762÷2.999 Å відповідно, що приводить до збільшення вкладу іонної складової. При від Sb₂Se₃ AgSbP₂Se₆ переході ДО спостерігається зменшення довжини зв'язків Sb-Se від 2.589÷3.215 Å до 2.595÷2.917 Å відповідно, що приводить до зростання ковалентності зв'язків.

На одержаних монокристалічних взірцях $AgSbP_2Se_6$ [30] було проведено дослідження спектрів поглинання на двопроменевому спектрофотометрі Shimadzu UV-2600. Експериментальні дослідження оптичних спектрів в області поглинання дають інформацію щодо енергетичного спектру електронів поблизу країв зони провідності і забороненої зони.

На Рис.6а представлена графічна залежність спектру поглинання від довжини хвилі $T = f(\lambda)$ сполуки AgSbP₂Se₆. На графіку є один злам при довжині хвилі 831 нм, який характеризує міжзонні оптичні переходи електронів з валентної зони (ВЗ) до зони провідності (ЗП). Експериментальні розрахунки показали, що оптична ширина забороненої зони становить $E_g=1.49$ еВ.

© Сабов В.І., Погодін А.І., Сабов М.Ю., Барчій І.Є., Студеняк Я.І., Гаврильцо Г.Ю., Стерчо О.О. DOI: 10.24144/2414-0260.2024.1.5-18

У результаті порівняння енергетичного положення краю оптичного поглинання методом Тауца (Рис.66) $(\alpha hv)^2 = f(hv)$ встановлено, що ширина забороненої зони становить $E_g = 1.48$ еВ і характеризується прямими дозволеними оптичними переходами.

Ab initio квантово-хімічні розрахунки електронної структури проводили з використанням програмного пакету Quantum Espresso (QE), який здійснює обчислення електронної структури в межах теорії функціоналу густини [36,37].

Необхідно відмітити, що використання стандартних наближень для обміннокореляційної взаємолії методами апроксимації локальної густини (LDA), градієнтного узагальненого наближення (GGA) для квантово-хімічних розрахунків не дає адекватного опису шаруватих структур з вираженою Ван-дер-Ваальсовою взаємодією в неорганічних речовинах [38,39]. Тому для коректних розрахунків слід використовувати більш точні функціонали Пердью-Берка-Ернзергофа (PBE) [40] та Пердью-Ванга (PW) [41].

QE характеризується покращеною точністю DFT розрахунків завдяки використанню нелокально-адитивних функціоналів кінетичної енергії (LMGP), кореляційних функціоналів rVV10 і vdW-DF, «деорбіталізованих» мета-функцій GGA (SCAN-L) [42].

Геометричну оптимізацію структур складних селенідів проводили на основі ітераційного методу самоузгодженого поля (SCF) з використанням алгоритму Брюдена – Флетчера – Гольдфарба – Шанно, який призначений для знаходження локального максимуму/мінімуму нелінійного функціоналу без обмежень. Основні параметри SCF: обмеження енергії хвильової функції 340.14 еВ, ліміт збіжності по енергії 13.61×10⁻⁶ eB, заповнюваність – гаусове розмиття з шириною 0.14 eB, поріг збіжності іонної оптимізації 13.61×10⁻³ еВ. Основні параметри BFGS: критерій збіжності по енергії 13.61×10⁻⁴ еВ, сили 25.71×10⁻³ еВ/Å. Зонну структуру подвійних сполук Ад2Se, Sb₂Se₃ розраховували вздовж ліній, що з'єднують високі точки симетрії Г-Х-S-Y- $\Gamma - Z - U - R - T - Z | Y - T | U - X | S - R,$ сполуки AgSbP₂Se₆ (Γ -Y-D-Z X-A) першої зони Бріллюена (Рис.7).

Проведені теоретичні розрахунки зонної структури, загальної густини станів (DOS) (Рис.8) дали можливість визначити криві розподілу енергії електронних станів у валентній зоні (ВЗ) та зоні провідності (ЗП), тип провідності, значення енергії кристалічної комірки ($E_{\rm kp}$), енергії Фермі ($E_{\Phi \rm epmi}$), оптичної ширини забороненої зони ($E_{\rm g}$) досліджуваних складних селенідів, які представлені в таблиці З.

D

б)

Таблиця 3. Характеристичні параметри електронної структури сполук Ag₂Se, Sb₂Se₃, AgSbP₂Se₆.

Сполука	Н/п тип	E _{kp} , eB	E/ат, eВ	$E_{\Phi epmi}, eB$	B3 _{max} , eB	$3\Pi_{\min}, eB$	E _g , eB
Ag ₂ Se	прямозон.	-9148.73	-766.67	9.75	-0.02	0.03	0.05
Sb ₂ Se ₃	прямозон.	-5568.97	- 278.44	6.12	-0.46	0.41	0.87
AgSbP ₂ Se ₆	прямозон.	-6921.74	-346.09	5.34	-0.74	0.68	1.42

Рис.8. Загальна та парціальна густина станів (DOS) сполук Ag₂Se (a), Sb₂Se₃ (б), AgSbP₂Se₆ (в)

© Сабов В.І., Погодін А.І., Сабов М.Ю., Барчій І.Є., Студеняк Я.І., Гаврильцо Г.Ю., Стерчо О.О. DOI: 10.24144/2414-0260.2024.1.5-18

-11-

-12-

Рис.9. Парціальна густина станів (PDOS) індивідуальних елементів у сполуках Ag₂Se (a), Sb₂Se₃ (б), AgSbP₂Se₆ (в)

© Сабов В.І., Погодін А.І., Сабов М.Ю., Барчій І.Є., Студеняк Я.І., Гаврильцо Г.Ю., Стерчо О.О. DOI: 10.24144/2414-0260.2024.1.5-18

Для характеристики походження енергетичних рівнів були розраховані загальна та парціальна густина станів (IDOS, PDOS) у сполуках Ag₂Se, Sb₂Se₃, AgSbP₂Se₆ (Рис.8-9).

Для сполуки Ag₂Se низькоенергетичні стани валентної зони (B3) формують Se 4sрівні (-13.5 ÷ -12.5 eB). В області енергій -6.0 ÷ -2.5 eB розташовані Ag 4d-рівні. Високоенергетичні стани валентної зони -2.5 ÷ -0.02 eB формують Se 4p-рівні. Дно зони провідності (ЗП) (0.03÷ 5.0 eB) утворюють Ag 5s-рівні. Оптична ширина забороненої зони (E_g =0.05 eB) Ag₂Se формується переходами електронів Se 4p → Ag 5s.

Для сполуки Sb₂Se₃ дно валентної зони (B3) формують Se 4*s*-рівні (-14.7 \div -12.5 eB). В області енергій -10.0 \div -7.5 eB розташовані Sb 5*s* -рівні. Високоенергетичні стани валентної зони -6.0 ÷ -0.46 еВ формують Se *4р-*рівні. Дно зони провідності **(3Π)** $(0.41 \div 5.0 \text{ eB})$ Sb утворюють *5р-*рівні. Оптична ширина забороненої зони $(E_{g}=0.87 \text{ eB}) \text{ Sb}_{2}\text{Se}_{3}$ утворюється переходами електронів Se $4p \rightarrow$ Sb 5p.

Низькоенергетичну частину валентної зони сполуки AgSbP₂Se₆ -16.0 ÷ -12.5 eB формують Se 4s- та Р 3s-рівні. В області енергій -12.5 ÷ -7.5 еВ розташовані Se 4s- та Sb 5s-рівні, в області енергій $-7.5 \div -4.5$ eB розташовані Se 4p- та Р 3p-рівні. Для високоенергетичної частини валентної зони -4.5.0 ÷ -0.74 eB характерні Ag 4d-, Se 4p- та Дно Sb *4р-*рівні. зони провідності (0.68÷ 5.0 eB) утворюють Sb 5*p*-, Se 4*p*- та P Зр-рівні. Оптична ширина забороненої зони сполуки AgSbP₂Se₆ (E_g =1.42 eB) утворюється переходами електронів Se $4p \rightarrow$ Sb 5p.

Максимум валентної зони та мінімум зони провідності знаходяться для сполук Ag₂Se, Sb₂Se₃, AgSbP₂Se₆ в одній зоні Бріллюена (Рис.10а-в), для сполуки, що вказує прямозонний тип провідності складних селенідів.

Необхідно відмітити, що одержане теоретичне значення оптичної ширини забороненої зони 1.42 еВ (програма QE) добре узгоджується з експериментальним значенням 1.48 еВ (спектри пропускання).

Висновки

Рентгени	вським	мето	дом	порошку
проведено	вивчен	ня	кри	істалічної
структури	спол	іуки		AgSbP ₂ Se ₆

Кристалохімічні структурні розрахунки з використанням програмного комплексу EXPO-CCP14 показали, що сполука AgSbP₂Se₆ кристалізується у тригональній сингонії, ПГ *R-3*, параметри елементарної комірки a = 6.61573 Å, c = 39.86223 Å, V=1510.94 Å³, Z=6.

Здійснено кристалохімічний аналіз структур складних селенідів Ag₂Se, Sb₂Se₃, AgSbP₂Se₆.

Сполука Ag_2Se (низькотемпературна модифікація) кристалізується в орторомбічній сингонії ($P2_12_12_1$). Катіони Ag^{1+} зв'язані у 3-координатній геометрії з трьома еквівалентними атомами Se^{2-} . Аніони Se^{2-} координують навколо себе шість Ag^{1+} .

 Sb_2Se_3 кристалізується в орторомбічній сингонії (*Pnma*) із слабо вираженою шаруватою 2D-структурою. Катіони Sb^{3_+} знаходяться у двох нееквівалентних позиціях: у першій утворює деформовані октаедри $[SbSe_6]$, у другій квадратні піраміди $[SbSe_5]$.

Кристалічна структура сполуки AgSbP₂Se₆ (*R*-3) характеризується утворенням шарів із аніонних груп атомів $[P_2Se_6]^{4-}$. У просторі між аніонними групами почергово розміщаються катіони Ag⁺, Sb³⁺, які знаходяться в октаедричній координації з Se²⁻. Катіони Sb³⁺ розташовані на одній площині з центрами зв'язків P–P аніонних груп $[P_2Se_6]^{4-}$, катіони Ag⁺ у незначній мірі зміщені відносно даної площини.

Вивчення оптичних спектрів поглинання монокристалу AgSbP₂Se₆ показало, що для нього характерним є прямозонний дозволений тип провідності, ширина забороненої зони становить $E_g=1.49$ еВ (методом Тауца на основі $(\alpha hv)^2 = f(hv)$ $E_g=1.48$ еВ).

Ab initio квантово-хімічні розрахунки електронної структури з використанням програмного пакету Quantum Espresso (QE) на основі теорії функціоналу густини (DFT) показали, що складні селеніди Ag₂Se, Sb₂Se₃, AgSbP₂Se₆ характеризується прямозонним провідності, ширина типом оптичної забороненої зони $E_{\rm g} = 0.05$ eB (Ag₂Se), $E_{g} = 0.87$ $E_{g} = 1.42$ eВ $(Sb_2Se_3),$ eВ $(AgSbP_2Se_6)$, енергія Фермі $E_{\Phi epmi}$ =9.75 eB (Ag₂Se), $E_{\phi_{epmi}}$ =6.12 eB (Sb₂Se₃), $E_{\phi_{epmi}}$ =5.34 eB (AgSbP₂Se₆). Оптична заборонена зона (E_{g}) сполук Sb₂Se₃, AgSbP₂Se₆ формується переходами електронів Se $4p \rightarrow$ Sb 5p, для сполуки Ag₂Se Se $4p \rightarrow$ Ag 5s.

Список використаних джерел

1. Snyder G.J., Toberer E.S. Complex Thermoelectric Materials. *Nature Mater.* 2008, 7 (2), 105–114. DOI:10.1038/nmat2090.

2. Liu H.L., Shi X., Xu F.F., Zhang L., Zhang W.Q., Chen L.D., Uher Q.Li,C., Day T., Snyder G.J., Copper ion liquid-like thermoelectrics. *Nature Mater*. 2012, 11(5), 422–425. DOI:10.1038/nmat3273.

3. Ballikaya S., Chi H., Salvador J.R., Uher C.J. Thermoelectric. properties of Ag-doped Cu₂Se and Cu₂Te, *Mater. Chem. A.* 2013, 1, 12478. DOI:10.1016/j.actamat.2014.12.008.

4. Drymiotis F., Day T.W., Brown D.R., Heinz N.A., Snyder G.J. Thermoelectric transport of Se-rich Ag₂Se in normal phases and phase transitions *Appl*. *Phys. Lett.* 2013, 103, 143906. DOI:10.1063/1.4870509.

5. D. R. Brown, T. Day, K. A. Borup, S. Christensen, B. B. Iversen, and G. J. Snyder, Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. *APL Mater.* 2013, 1, 052107. DOI:10.1063/1.4827595.

6. Aliev F.F., Jafarov M.B., Eminova V.I., The effects of defects on electrical properties of Ag₂S at phase transition. *Semiconductors*. 2009, 43, 977–979. DOI:10.1134/S1063782609080028.

7. Fang C.M., A. de Groot R., Wiegers G.A. Ab initio band structure calculations of the low-temperature phases of Ag_2Se , Ag_2Te and Ag_3AuSe_2 . *J. Phys. Chem.* Solids. 2002, 63, 457–464. DOI:10.1016/S0022-3697(01)00160-3.

8. Israel R., De Gelder R., Smits J.M.M., Beurskens P.T., Eijt S.W.H., Rasing T.H., Van Kempen H., Maior M.M., Motrya S.F. Crystal structures of di-tinhexa(seleno)hypodiphosphate, $Sn_2P_2Se_6$, in the ferroelectric and paraelectric phase. *Z. Kristallogr*. 1998, 213, 34–41.

9 Galdamez A., Manriquez V., Kasaneva J., Avila R.E. Synthesis, characterization and electrical properties of quaternary selenodiphosphates: AMP₂Se₆ with A j Cu, Ag and M j Bi, Sb. *Mat. Res. Bull.* 2003, 38, 1063–1072. DOI:10.1016/S0025-5408(03)00068-0.

10. McGuire M.A., Reynolds T.K., DiSalvo F.J. Exploring Thallium Compounds as Thermoelectric Materials: Seventeen New Thallium Chalcogenides. *Chem. Mater.* 2005, 17, 2875–2884. DOI:10.1021/cm050412c.

11. Gave M.A., Bilc D., Mahanti S.D., Breshears J.D., Kanatzidis M.G. On the Lamellar Compounds $CuBiP_2Se_6$, $AgBiP_2Se_6$ and $AgBiP_2S_6$. Antiferroelectric Phase Transitions Due to Cooperative Cu^+ and Bi^{3+} *Ion Motion. Inorg. Chem.* 2005, 44, 5293–5303. DOI:10.1021/ic050357+.

12. Pfeiff R., Kniep R. Quaternary selenodiphosphates(IV): $M(I)M(III)[P_2Se_6]$, (M(I)= Cu, Ag; M(III)= Cr, Al, Ga, In). J. Alloys Compd. 1992, 186, 111–133. DOI:10.1002/chin.199240006.

13. Okamoto H., Schlesinger M.E., Mueller E.M. Ag (Silver) Binary Alloy Phase Diagrams. Alloy Phase Diagrams. *ASM International*. 2016, 3. DOI:10.31399/asm.hb.v03.a0006143.

14. Rajkumar V.B., Sinn-wen Chen. Ag-Se phase diagram calculation associating ab initio - molecular dynamics simulation. *Calphad*. 2018, 63, 51–60. DOI:10.1016/j.calphad.2018.08.004.

15. Karakaya I., Thompson W.T. The Ag-Se (Silver-Selenium) system. *Bulletin of Alloy Phase Diagrams*. 1990, 11(3). 267–269.

16. Wiegers G.A. The crystal structure of the low-temperature form of silver selenide. *American Mineralogist.* 1971, 56,1882–1888.

17. Billetter H., Ruschewitz U. Structural phase transitions in Ag_2Se (naumannite). Zeitschrift fuer Anorganische und Allgemeine Chemie. 2008, 634, 241–246.

18. Wenlong Mi, Pengfei Qiu, Tiansong Zhang, Yanhong Lv, Xun Shi, Lidong Chen. Thermoelectric transport of Se-rich Ag₂Se in normal phases and phase transitions. *Appl. Phys. Lett.* 2014, 104, 133903. DOI:10.1063/1.4870509.

19. Tsuchiya Y. Velocity of sound and high-energy γray attenuation inliquid Ag–Se alloys. J. *Phys.: Condens. Matter.* 1996, 8, 1897–1908. http://iopscience.iop.org/0953-8984/8/12/005.

20. Tubtimtae A., Lee M.-W., Wang G.-J. Ag₂Se quantum-dot sensitized solar cells for full solar spectrum light harvesting, *J. Power Sources.* 196 (2011) 6603–6608. DOI:10.1016/j.jpowsour. 2011.03.074.

21. Okamoto H., Schlesinger M.E., Mueller E.M. Sb (Antimony) Binary Alloy Phase Diagrams. Alloy Phase Diagrams *ASM International*. 2016, 3. DOI: 10.31399/asm.hb.v03.a0006143.

22. Min M.-Z., Zhai J.-P., Wang X.-Y., Shen B.-P., Wen G.-D., Fan T. Refinement of the crystal structure for a new mineeral antimonselite. *Chin. Sci. Bull.* 1998, 43, 413–416.

23. Voutsas G.P., Papazoglou A.G., Rentzeperis P.J. The crystal structure of antimony selenide, Sb₂Se₃. *Z. Kristallogr.* 1985, 171, 261–268.

24. Madelung O. Semiconductors: data handbook. (3rd edition). *Springer*. 2004. ISBN 9783540404880.

25. Wong L.-H., Zakutayev A., Douglas J., Xiaojing H., Walsh A., Todorov T.K., Saucedo E. Emerging inorganic solar cell efficiency tables (Version 1). *J Phys Energy*. 2019, 1(3), 032001. DOI:10.1088/2515-7655/ab2338

26. Zhaoteng Duan, Xiaoyang Liang, Yang Feng, Zhiqiang Li.et. Sb₂Se₃ Thin Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition (IVD) Technology. *Advanced Materials*, 2022, 34(30), 2969. DOI:10.1002/adma.202202969.

27. Tuan V.V., Lavrentyev A.A., Gabrelian B.V., Vo Dat D., Sabov V.I., Sabov M.Yu., Barchiy I.E., Piasecki M., Khyzhun O.Y. Highly anisotropic layered selenophosphate AgSbP₂Se₆: The electronic structure and optical properties by experimental measurements and first principles calculations. *Chemical Physics*. 2020, 536, 110813. DOI:10.1016/j.chemphys.2020.110813.

28. Susner M.A., Chyasnavichyus M., McGuire M.A., Ganesh P., Maksymovych P. Metal Thio- and Selenophosphates as Multifunctional van der Waals Layered Materials. *Advanced Materials*. 2017, 29, 1602852. DOI:10.1002/adma.201602852.

29. Seidlmayer S. Strukturchemische Untersuchungen an Hexachalkogenohypodiphosphaten und verwandten Verbindungen. *Dissertation*. 2009. DOI:10.13140/RG.2.2.15263.00162.

30. Сабов В.І., Погодін А.І., Поторій М.В., Сабов М.Ю. Вирощування монокристалів сполук TlSbP₂Se₆, AgSbP₂Se₆ та AgBiP₂Se₆. *Науковий вісник Ужгородського університету. Серія «Хімія».* 2017, 1(37), 17–19.

31. Сабов В.І., Поторій М.В., П'ясецкі М., Філеп М.Й., Погодін А.І., Сабов М.Ю. Взаємодія компонентів у системі $Ag_{(2-x)}Sb_xP_{2x}Se_{(1+5x)}$ (0<x<1). *Науковий вісник Ужгородського університету. Серія «Хімія».* 2021, 1(45), 35–41. DOI: 10.24144/2414-0260.2021.1.35-41

32. Altomare A., Cuocci C., Giacovazzo C., Moliterni A., Rizzi R., Corriero N., Falcicchio A. EXPO2013: a kit of tools for phasing crystal structures from powde. *J. Appl. Cryst.* 2013, 46, 1231–1235. DOI:10.1107/S0021889813013113

33. Koichi Momma, Fujio Izumi. VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. *J. Appl. Cryst.* 2011, 44, 1272– 1276. DOI:10.1107/S0021889811038970

34. Bergerhoff G. DIAMOND - Visual Crystal Structure Information System. *Gerhard-Domagk-Str. 1*, *53121 Bonn, Germany* 1996.

35. Tauc J. States in the gap. J. Non-Cryst. Solids. 1972. 8(10). 569–585.

36. Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. *J. Phys.: Condensed Matter.* 2017, 29(46), 465901–465912. DOI:10.1088/1361-648X/aa8f79.

37. Dal Corso A. A Pseudopotential Plane Waves Program (PWSCF) and some Case Studies. Springer, Berlin, Heidelberg. 1996, 67, 155–178. DOI:10.1007/978-3-642-61478-1_10.

38. Freyss M. Density functional theory. *Nuclear Science NEA/NSC/R*. 2015, 5, 225–235. https://www.oecd-

nea.org/upload/docs/application/pdf/2020-01/nsc-r2015-5.pdf.

39. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple *Phys. Rev. Lett.* 1996, 77, 3865.

DOI:10.1103/PhysRevLett.77.3865.

40.Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple *Phys. Rev. Lett.* 1996, 77, 3865. DOI:10.1103/PhysRevLett.77.3865.

41. Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. *Phys. Rev. B.* 1992, 45, 13244. DOI:10.1103/PhysRevB.45.13244..

42. Mi W., Shao X., Genova A., Ceresoli D., Pavanello M. eQE 2.0: Subsystem DFT Beyond GGA Functionals. *Comp. Phys. Commun.* 2021, 269, 108122. DOI:10.1016/j.cpc.2021.108122. 43. Setyawan W., Curtarolo S. High-throughput electronic band structure calculations: Challenges and

tools. *Comp. Mater. Sci.*. 2010, 49(2), 299-312. DOI:10.1016/j.commatsci.2010.05.010.

Стаття надійшла до редакції: 30.04.2024

STUDY OF ELECTRONIC STRUCTURE OF Ag₂Se, Sb₂Se₃, AgSbP₂Se₆

-16-

Sabov V.I., Pogodin A.I., Sabov M.Yu., Barchiy I.E., Studenyak Ya.I., Havryltso G.Yu., Stercho A.A.

Uzhhorod National University, Pidgirna St. 46, 88000, Uzhhorod; Ukraine, igor.barchiy@uzhnu.edu.ua

The crystal structure of the AgSbP₂Se₆ compound was studied by X-ray powder method. Crystal chemical structural calculations using the EXPO–CCP14 software complex showed that the AgSbP₂Se₆ compound crystallizes in trigonal syngoni, SG *R*-3, unit cell parameters a = 6.61573 Å, c = 39.86223 Å, V=1510.94 Å³, Z=6.

A crystal-chemical analysis of the structures of complex selenides Ag₂Se, Sb₂Se₃, AgSbP₂Se₆ was carried out. Ag₂Se compound (low-temperature modification) crystallizes in orthorhombic syngonia ($P2_12_12_1$). Ag⁺ cations are bound in a 3-coordinate geometry with three equivalent Se²⁻ atoms. Se²⁻ anions coordinate six Ag⁺ around themselves. Sb₂Se₃ crystallizes in orthorhombic syngonia (*Pnma*) with a weakly expressed layered 2D-structure. Sb³⁺ cations are in two non-equivalent positions: in the first they form deformed [SbSe₆] octahedra, in the second [SbSe₅] square pyramids. The crystal structure of the compound AgSbP₂Se₆ (*R-3*) is characterized by the formation of layers from the anionic group of atoms [P₂Se₆]⁴⁻. In the space between the anionic groups, cations Ag⁺, Sb³⁺, which are in octahedral coordination with Se²⁻, are placed alternately. Sb³⁺ cations are located on the same plane as the P–P bond centers of [P₂Se₆]⁴⁻ anionic groups, Ag⁺ cations are slightly displaced relative to this plane.

The study of the optical absorption spectra of AgSbP₂Se₆ single crystal showed that it is characterized by a direct-band allowed type of conductivity, the band gap is E_g =1.49 eV (Tautz method based on $(ahv)^2 = f(hv) E_g$ =1.48 eV). Ab initio quantum-chemical calculations of the electronic structure using the Quantum Espresso (QE) software package based on density functional theory (DFT) showed that the complex selenides Ag₂Se, Sb₂Se₃, AgSbP₂Se₆ are characterized by a direct band type of conductivity, the width of the optical band gap $E_g = 0.05$ eV (Ag₂Se), $E_g = 0.87$ eV (Sb₂Se₃), $E_g = 1.42$ eV (AgSbP₂Se₆), Fermi energy E_{Fermi} =9.75 eV (Ag2Se), E_{Fermi} =6.12 eV (Sb₂Se₃), E_{Fermi} =5.34 eV (AgSbP₂Se₆). The optical band gap (E_g) of Sb₂Se₃, AgSbP₂Se₆ compounds are formed by electron transitions Se $4p \rightarrow$ Sb 5p, for the Ag₂Se compound Se $4p \rightarrow$ Ag 5s.

Keywords: selenides; crystal structure; Ab initio calculations; electronic structure.

References

1. Snyder G.J., Toberer E.S. Complex Thermoelectric Materials. *Nature Mater.* 2008, 7 (2), 105–114. DOI:10.1038/nmat2090.

2. Liu H.L., Shi X., Xu F.F., Zhang L., Zhang W.Q., Chen L.D., Uher Q.Li,C., Day T., Snyder G.J., Copper ion liquid-like thermoelectrics. *Nature Mater*. 2012, 11(5), 422–425. DOI:10.1038/nmat3273.

3. Ballikaya S., Chi H., Salvador J.R., Uher C.J. Thermoelectric. properties of Ag-doped Cu₂Se and Cu₂Te, *Mater. Chem. A.* 2013, 1, 12478. DOI:10.1016/j.actamat.2014.12.008.

4. Drymiotis F., Day T.W., Brown D.R., Heinz N.A., Snyder G.J. Thermoelectric transport of Se-rich Ag₂Se in normal phases and phase transitions *Appl. Phys. Lett.* 2013, 103, 143906. DOI:10.1063/1.4870509.

5. D. R. Brown, T. Day, K. A. Borup, S. Christensen, B. B. Iversen, and G. J. Snyder, Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. *APL Mater.* 2013, 1, 052107. DOI:10.1063/1.4827595.

6. Aliev F.F., Jafarov M.B., Eminova V.I., The effects of defects on electrical properties of Ag₂S at phase transition. *Semiconductors*. 2009, 43, 977–979. DOI:10.1134/S1063782609080028.

-17-

7. Fang C.M., A. de Groot R., Wiegers G.A. Ab initio band structure calculations of the low-temperature phases of Ag₂Se, Ag₂Te and Ag₃AuSe₂. *J. Phys. Chem. Solids.* 2002, 63, 457–464. DOI:10.1016/S0022-3697(01)00160-3.

8. Israel R., De Gelder R., Smits J.M.M., Beurskens P.T., Eijt S.W.H., Rasing T.H., Van Kempen H., Maior M.M., Motrya S.F. Crystal structures of di-tin-hexa(seleno)hypodiphosphate, Sn₂P₂Se₆, in the ferroelectric and paraelectric phase. *Z. Kristallogr.* 1998, 213, 34–41.

9 Galdamez A., Manriquez V., Kasaneva J., Avila R.E. Synthesis, characterization and electrical properties of quaternary selenodiphosphates: AMP₂Se₆ with A j Cu, Ag and M j Bi, Sb. *Mat. Res. Bull.* 2003, 38, 1063–1072. DOI:10.1016/S0025-5408(03)00068-0.

10. McGuire M.A., Reynolds T.K., DiSalvo F.J. Exploring Thallium Compounds as Thermoelectric Materials: Seventeen New Thallium Chalcogenides. *Chem. Mater.* 2005, 17, 2875–2884. DOI:10.1021/cm050412c.

11. Gave M.A., Bilc D., Mahanti S.D., Breshears J.D., Kanatzidis M.G. On the Lamellar Compounds $CuBiP_2Se_6$, $AgBiP_2Se_6$ and $AgBiP_2S_6$. Antiferroelectric Phase Transitions Due to Cooperative Cu^+ and Bi^{3+} *Ion Motion. Inorg. Chem.* 2005, 44, 5293–5303. DOI:10.1021/ic050357+.

12. Pfeiff R., Kniep R. Quaternary selenodiphosphates(IV): $M(I)M(III)[P_2Se_6]$, (M(I)=Cu, Ag; M(III)=Cr, Al, Ga, In). J. Alloys Compd. 1992, 186, 111–133. DOI:10.1002/chin.199240006.

13. Okamoto H., Schlesinger M.E., Mueller E.M. Ag (Silver) Binary Alloy Phase Diagrams. Alloy Phase Diagrams. *ASM International*. 2016, 3. DOI:10.31399/asm.hb.v03.a0006143.

14. Rajkumar V.B., Sinn-wen Chen. Ag-Se phase diagram calculation associating ab initio - molecular dynamics simulation. *Calphad*. 2018, 63, 51–60. DOI:10.1016/j.calphad.2018.08.004.

15. Karakaya I., Thompson W.T. The Ag-Se (Silver-Selenium) system. *Bullletin of Alloy Phase Diagrams*. 1990, 11(3). 267–269.

16. Wiegers G.A. The crystal structure of the low-temperature form of silver selenide. *American Mineralogist*. 1971, 56,1882–1888.

17. Billetter H., Ruschewitz U. Structural phase transitions in Ag_2Se (naumannite). Zeitschrift fuer Anorganische und Allgemeine Chemie. 2008, 634, 241–246.

18. Wenlong Mi, Pengfei Qiu, Tiansong Zhang, Yanhong Lv, Xun Shi, Lidong Chen. Thermoelectric transport of Se-rich Ag₂Se in normal phases and phase transitions. *Appl. Phys. Lett.* 2014, 104, 133903. DOI:10.1063/1.4870509.

19. Tsuchiya Y. Velocity of sound and high-energy γ-ray attenuation inliquid Ag–Se alloys. J. *Phys.: Condens. Matter.* 1996, 8, 1897–1908. http://iopscience.iop.org/0953-8984/8/12/005.

20. Tubtimtae A., Lee M.-W., Wang G.-J. Ag₂Se quantum-dot sensitized solar cells for full solar spectrum light harvesting, *J. Power Sources*. 196 (2011) 6603–6608. DOI:10.1016/j.jpowsour.2011.03.074.

21. Okamoto H., Schlesinger M.E., Mueller E.M. Sb (Antimony) Binary Alloy Phase Diagrams. Alloy Phase Diagrams *ASM International*. 2016, 3. DOI:10.31399/asm.hb.v03.a0006143.

22. Min M.-Z., Zhai J.-P., Wang X.-Y., Shen B.-P., Wen G.-D., Fan T. Refinement of the crystal structure for a new mineeral antimonselite. *Chin. Sci. Bull.* 1998, 43, 413-416.

23. Voutsas G.P., Papazoglou A.G., Rentzeperis P.J. The crystal structure of antimony selenide, Sb₂Se₃. Z. *Kristallogr.* 1985, 171, 261–268.

24. Madelung O. Semiconductors: data handbook. (3rd edition). Springer. 2004. ISBN 9783540404880.

25. Wong L.-H., Zakutayev A., Douglas J., Xiaojing H., Walsh A., Todorov T.K., Saucedo E. Emerging inorganic solar cell efficiency tables (Version 1). *J Phys Energy*. 2019, 1(3), 032001. DOI:10.1088/2515-7655/ab2338.

26. Zhaoteng Duan, Xiaoyang Liang, Yang Feng, Zhiqiang Li.et. Sb₂Se₃ Thin Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition (IVD) Technology. *Advanced Materials*, 2022, 34(30), 2969. DOI:10.1002/adma.202202969.

27. Tuan V.V., Lavrentyev A.A., Gabrelian B.V., Vo Dat D., Sabov V.I., Sabov M.Yu., Barchiy I.E., Piasecki M., Khyzhun O.Y. Highly anisotropic layered selenophosphate AgSbP₂Se₆: The electronic structure and optical properties by experimental measurements and first principles calculations. *Chemical Physics*. 2020, 536, 110813. DOI:10.1016/j.chemphys.2020.110813.

28. Susner M.A., Chyasnavichyus M., McGuire M.A., Ganesh P., Maksymovych P. Metal Thio- and Selenophosphates as Multifunctional van der Waals Layered Materials. *Advanced Materials*. 2017, 29, 1602852. DOI:10.1002/adma.201602852.

29. Seidlmayer S. Strukturchemische Untersuchungen an Hexachalkogenohypodiphosphaten und verwandten Verbindungen. *Dissertation*. 2009. DOI:10.13140/RG.2.2.15263.00162.

-18-

30. Sabov V.I., Pogodin A.I., Potorij M.V., Sabov M.Yu. Single crystals growth of TlSbP₂Se₆, AgSbP₂Se₆ and AgBiP₂Se₆ compounds. *Sci. Bull. Uzhh. Univ. Ser. Chem.* 2017, 1(37), 17–19 (in Ukr).

31. Sabov V.I., Potorij M.V., Piasecki M., Filep M.J., Pogodin A.I., Sabov M.Yu. Interaction in the $Ag_{(2-x)}Sb_xP_{2x}Se_{(1+5x)}$ (0<x<1) system. *Sci. Bull. Uzhh. Univ. Ser. Chem.*, 2021, No1 (45), 35–41. DOI: 10.24144/2414-0260.2021.1.35-41 (in Ukr).

32. Altomare A., Cuocci C., Giacovazzo C., Moliterni A., Rizzi R., Corriero N., Falcicchio A. EXPO2013: a kit of tools for phasing crystal structures from powde. *J. Appl. Cryst.* 2013, 46, 1231–1235. DOI:10.1107/S0021889813013113.

33. Koichi Momma, Fujio Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Cryst.* 2011, 44, 1272–1276. DOI:10.1107/S0021889811038970.

34. Bergerhoff G. DIAMOND - Visual Crystal Structure Information System. *Gerhard-Domagk-Str. 1, 53121* Bonn, Germany 1996.

35. Tauc J. States in the gap. J. Non-Cryst. Solids. 1972. 8(10). 569–585.

36. Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. *J. Phys.: Condensed Matter*. 2017, 29(46), 465901–465912. DOI:10.1088/1361-648X/aa8f79.

37. Dal Corso A. A Pseudopotential Plane Waves Program (PWSCF) and some Case Studies. *Springer, Berlin, Heidelberg*. 1996, 67, 155–178. DOI:10.1007/978-3-642-61478-1_10.

38. Freyss M. Density functional theory. *Nuclear Science NEA/NSC/R*. 2015, 5, 225-235. https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/nsc-r2015-5.pdf.

39. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple *Phys. Rev. Lett.* 1996, 77, 3865. DOI:10.1103/PhysRevLett.77.3865.

40.Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple *Phys. Rev. Lett.* 1996, 77, 3865. DOI:10.1103/PhysRevLett.77.3865.

41. Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. *Phys. Rev. B.* 1992, 45, 13244. DOI:10.1103/PhysRevB.45.13244.

42. Mi W., Shao X., Genova A., Ceresoli D., Pavanello M. eQE 2.0: Subsystem DFT Beyond GGA Functionals. *Comp. Phys. Commun.* 2021, 269, 108122. DOI:10.1016/j.cpc.2021.108122.

43. Setyawan W., Curtarolo S. High-throughput electronic band structure calculations: Challenges and tools. *Comp. Mater. Sci.* 2010, 49(2), 299–312. DOI:10.1016/j.commatsci.2010.05.010.