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На основі гідрофільних та гідрофобних акрилових мономерів та наночастинок 

кремнезему синтезовано нові полімерні та нанокомпозитні мембрани з протонопровідними 

властивостями. Неорганічна сітка мембран сформована у полімерній матриці внаслідок золь-

гель реакції алкоксисиланових прекурсорів – 3-метакрилоксипропілтриметоксисилану 

(MAПTMС) та тетраетилортосилікату (TEOС) in situ. Склад вихідних композицій варіювали, 

змінюючи співвідношення гідрофільних та гідрофобних мономерів. Морфологія та хімічна 

структура синтезованих мембран були охарактеризовані методами СEM та ATR-FTIR. Виміряно 

протонну провідність, поглинання води та метанолу для синтезованих мембран. Встановлено, 

що існує кореляція між співвідношенням гідрофільних/гідрофобних мономерів і властивостями 

мембран, що дозволяє контрольовано налаштовувати їхні характеристики. Досліджено вплив 

наночастинок кремнезему на властивості мембран. Отримані полімерні і нанокомпозитні 

матеріали є перспективними для розробки протонопровідних мембран для прямих метанольних 

паливних елементів. 

Ключові слова: мембрана; нанокомпозит; золь-гель прекурсор; акриловий мономер; 

протонна провідність. 

 

Серед різних типів паливних комірок, 

які використовуються у даний час, значну 

увагу привертають прямі метанольні паливні 

елементи (ПМПЕ) [1-4]. Паливом для 

виробництва енергії у них служить метанол, 

який має ряд переваг порівняно з 

газоподібним воднем. Цей тип паливних 

елементів прямо перетворює хімічну енергію 

метанолу в електричну енергію у результаті 

електрохімічного процесу. ПМПЕ працюють 

при відносно низьких температурах (як 

правило, 70 – 90°C). Завдяки високій 

об’ємній питомій щільності енергії, швидкій 

перезарядці та простоті керування такі 

портативні пристрої можна використовувати 

для заряджання акумуляторів та на 

транспорті. 

Ключовим компонентом паливного 

елемента, що визначає ефективність роботи 

всього пристрою, є протонопровідна 

мембрана (ПEM). Комерційно доступні 

перфторовані мембрани, такі як Nafion, 

Flemion не надаються для використання у 

ПМПЕ, оскільки володіють значним 

метанольним кросовером. Крім цього, ці 

мембрани високовартісні і мають складний 

процес синтезу, тому не відповідають 

вимогам для високопродуктивних ПМПЕ. У 

зв’язку з цим постає необхідність 

розроблення альтернативних матеріалів для 

протонопровідних мембран у ПМПЕ. 

З цією метою використовують, 

зокрема, підхід, заснований на синтезі 

матеріалів на основі амфіфільних структур, у 

яких поєднуються гомогенно розміщені 

гідрофільні та гідрофобні домени. Такі 

структури містять взаємопов’язані 

гідрофільні та гідрофобні фази, що 

утворюють безперервні мережі у структурі 

матеріалу. У гідрофільних областях 

відбувається рух протонів, а гідрофобні 

домени забезпечують механічну стабільність. 

Для запобігання метанольному кросоверу 

важливо досягти оптимального балансу між 

гідрофільними та гідрофобними областями 

мембрани [5]. Покращення механічних 
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властивостей, хімічної стабільності 

досягають модифікуванням полімерів 

неорганічними наповнювачами.  

Автори [6] виготовили мембрани для 

ПМПЕ на основі композитів сульфованого 

полі(ефір ефір кетону) sPEEK (зі ступенем 

сульфування 42 і 68%) як полімерної матриці. 

Цей полімер був модифікований 

впровадженням неорганічного компонента – 

фосфату цирконію (ZrP), попередньо 

обробленого n-пропіламіном і 

полібензімідазолом (ПБI). Досліджували такі 

характеристики матеріалу, як протонна 

провідність, набрякання у воді та метанолі, 

морфологія. При випробуваннях у ПМПЕ при 

110°C і 100% відносній вологості 

немодифікована мембрана sPEEK зі ступенем 

сульфування 42% виявилася найкращою, 

хоча й з вищим коефіцієнтом переносу 

метанолу. Натомість, при відносній вологості 

138% найкращу продуктивність показала 

композитна мембрана sPEEK зі ступенем 

сульфування 68% та 20,0 мас.% ZrP, і 11,2 

мас.% ПБI. 

Сучасний розвиток золь-гель 

технологій дозволяє модифікувати полімерні 

мембрани шляхом формування неорганічної 

наномережі безпосередньо в полімерній 

матриці. Золь-гель метод полягає у 

двостадійній реакції гідролізу та конденсації 

алкоксисиланів, в результаті чого 

утворюються наночастинки кремнію. 

Поєднання золь-гель техніки з реакцією УФ-

затвердіння може бути використано для 

отримання протонопровідних 

нанокомпозитних матеріалів на основі 

акрилатів та алкоксисиланів [7, 8]. При цьому 

утворюються органічно-неорганічні мережі, 

тісно пов’язані між собою, що приводить до 

утворення наноструктурованих фаз з високим 

ступенем дисперсії.  

При використанні у золь-гель процесах 

алкоксисиланів, що містять реакційноздатні 

групи, досягається утворення міцних 

ковалентних зв’язків між органічною та 

неорганічною частинами композиту. Одним з 

таких сполучних агентів останнім часом 

поряд з традиційними тетраетоксисиланом, 

триметилетоксисиланом, 

вінілтриметоксисиланом та ін. 

використовують 3-

метакрилоксипропілтриметоксисилан 

(МАПТМС), що завдяки наявності 

акрилатного фрагменту впроваджується у 

полімерний ланцюг і забезпечує хімічний 

зв’язок між полімером і кремнеземною 

наносіткою. Автори [9] приготували 

нанокомпозитні матеріали на основі 

акрилатних олігомерів і MAПТМС і 

підтвердили наявність в кінцевих продуктах 

хімічного зв’язку між органічною частиною 

MAПТМС та акрилатними олігомерами. 

У цьому дослідженні ми розробили 

нанокомпозитні мембрани з 

протонопровідними властивостями для 

ПМПЕ. Це досягнуто шляхом поєднання 

акрилових гідрофільних мономерів 2-

акриламід-2-метилпропансульфонової 

кислоти (AMПС) та акрилової кислоти (AК) з 

гідрофобним мономером акрилонітрилом 

(AН) для формування полімерної матриці, а 

також модифікування наночастинками 

кремнезему за допомогою золь-гель процесу. 

 

Експериментальна частина 

Нанокомпозитні мембрани були 

отримані шляхом УФ-полімеризації 

акрилових мономерів 2-акриламідо-2-

метилпропансульфонової кислоти (AMПС), 

акрилової кислоти (AК), акрилонітрилу (АН) 

із одночасним синтезом кремнеземних 

наночастинок за допомогою золь-гель 

процесу. Як фотоініціатор процесу 

полімеризації був використаний 2,2-

диметокси-1,2-дифенілетан-1-он (IRGACURE 

651). Додатково було використано невелику 

кількість (3 %) зшивального агента N,N'-

метилен(біс)акриламіду (MBA) для 

створення тривимірної полімерної сітки. 

Гідрофільні мономери (AMПС, АК і MBA) 

розчиняли у деіонізованій воді (WSC/вода = 

80/20 мас./мас.) при перемішуванні. До 

отриманого розчину додавали відповідну 

кількість гідрофобного мономера (АН) і 

додатково перемішували при 500 об/хв 

протягом 30 хв. Золь-гель прекурсори 

MAПТМС, TEOС, етанол, воду та 

ортофосфорну кислоту (каталізатор гідролізу 

алкоксисиланів), взяті у мольному 

співвідношенні 0,25 : 0,75 : 4 : 4 : 1, 

перемішували на водяній бані при 

температурі 50°C протягом 180 – 200 хв [10, 

11]. Перед початком гелеутворення 

приготовлений розчин золь-гель прекурсорів 

додавали до мономерів у кількості 20 мас.% 
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від маси мономерів. Композиції поміщали у 

форми і піддавали УФ-опроміненню при 

довжині хвилі 365 нм, використовуючи 

прилад BIO-LINK® (BLX-365, Witec AG, 

Швейцарія). Після цього отримані мембрани 

промивали і сушили до постійної ваги при 

температурі 50°C. Склад композицій для 

виготовлення мембран представлено в табл. 1. 

 

Таблиця 1. Склад композицій для синтезу мембран. 

Зразок АМПС АК АН МБА АМПС/АН ЗГ 

 г ммоль г ммоль г ммоль г ммоль ммоль/ммоль  

М 1 0,30 1,45 0,50 6,94 1,20 22,61 0,06 0,39 0,06 - 

М 2 0,40 1,93 0,40 5,55 1,20 22,61 0,06 0,39 0,09 - 

М 3 0,30 1,45 0,50 6,94 1,20 22,61 0,06 0,39 0,06 20 % 

М 4 0,40 1,93 0,40 5,55 1,20 22,61 0,06 0,39 0,09 20 % 

 

Хімічний склад синтезованих мембран 

визначали методом ATR-FTIR спектроскопії 

[12]. Вимірювання проводили в діапазоні 600 

– 4000 см¹ з роздільною здатністю 4 см⁻¹. 

Морфологію мембран досліджували за 

допомогою сканувального електронного 

мікроскопа (СEM), використовуючи робочу 

станцію NEON 40 FIB-SEM (Carl Zeiss AG, 

Німеччина). Для отримання зображення 

поперечного перерізу зневоднені зразки 

мембран фракціонували після занурення в 

рідкий азот. Перед візуалізацією зразки 

покривали шаром вуглецю товщиною ≈ 3 нм. 

Поглинання води (ВП) та метанолу (ПM) 

визначали за різницею у вазі мембран до і 

після занурення у відповідні розчини. Перед 

вимірюванням зразки сушили при 

температурі 50°C до постійної ваги. Далі їх 

поміщали в деіонізовану воду або метанол на 

24 год. Після виймання зразки обережно 

промокали фільтрувальним папером, щоб 

видалити краплі, та негайно зважували [11]. 

Протонну провідність вимірювали в 

поздовжньому напрямку стандартним 

чотириелектродним методом за допомогою 

потенціостата Camry Reference 600 у 

діапазоні частот від 1 Гц до 100 кГц. Опір 

мембрани визначали на частоті, де фазовий 

кут був найближчим до нуля. Перед 

вимірюванням зразки мембран (2 × 4 см²) 

занурювали в 0,1 N розчин хлоридної 

кислоти за кімнатної температури на 2 год. 

Кожен зразок врівноважували при 

температурі експерименту протягом не 

менше ніж 120 хв. Протонну провідність (σ) 

розраховували за таким рівнянням: 

σ = L/(R⋅d⋅W), де L – відстань між двома 

електродами, d – товщина мембрани, W – 

ширина мембрани, R – опір. Значення 

протонної провідності, поглинання води та 

метанолу були розраховані як середнє 

значення п’яти незалежних вимірювань. 

 

Результати та обговорення 

Полімерні мембрани синтезували 

методом УФ-ініційованої полімеризації 

акрилових мономерів, які легко піддаються 

процесу УФ-затвердіння , не потребуючи 

термічної полімеризації. Зшивання мембран 

відбувалось за рахунок зшивача МБА. Для 

модифікування полімерних мембран 

наночастинками кремнезему був 

застосований in situ золь-гель метод. У 

результаті реакцій гідролізу та 

поліконденсації алкоксисиланових 

прекурсорів – МАПТМС і ТЕОС – була 

сформована кремнекиснева сітка, яка 

додатково зшивала структуру зв’язками Si-O-

Si. Ці процеси, що проходять паралельно, 

забезпечують однорідність структури 

мембран та мінімізацію фазового розділення.  

Були синтезовані два типи полімерних 

мембран та два типи нанокомпозитних 

мембран з різним мольним співвідношенням 

гідрофільного і гідрофобного мономерів. 

Мембрани отримали у вигляді тонких плівок 

товщиною 100 – 150 мкм. Нанокомпозитні 

мембрани були модифіковані додаванням 20 

% золь-гель системи. Схему синтезу 

нанокомпозитних мембран показано на рис. 1
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Рис. 1. Схема синтезу нанокомпозитних мембран. 

 

ATR-FTIR спектри отриманих мембран, 

представлені на рис. 2, підтверджують їхній 

хімічний склад у діапазоні 3600 – 550 см⁻¹. 

Смуга поглинання при 2243 см⁻¹ відповідає 

валентним коливанням –CN груп. 

Симетричні та асиметричні валентні 

коливання групи –SO₃, характерні для AMПС, 

спостерігаються при 1037 см⁻¹ та 1207 см⁻¹ 

відповідно.  

 
Рис. 2. ІЧ-спектри нанокомпозитних мембран та золь-гель системи. 

 

Інтенсивність піку S=O зростає зі 

збільшенням вмісту AMПС. Валентні 

коливання амідних груп (–NH та C=O) 

спостерігаються в області амідних смуг II 

(приблизно 1550 см⁻¹) та I (приблизно 1647 

см⁻¹) [4, 10]. Інтенсивна смуга при 1724 см⁻¹ 

відповідає валентним коливанням C=O 

карбоксильних груп. Інтенсивність цього 

піку зменшується в послідовності М 3 > М 4, 

що корелює зі зменшенням вмісту АМПС. 

Піки при 1080 см⁻¹ та 800 см⁻¹ відповідають 

асиметричним та симетричним валентним 
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коливанням Si–O–Si, що підтверджує 

наявність кремнеземної сітки у всіх зразках 

[13, 14]. Широкий пік приблизно при 3440 

см⁻¹ зумовлений валентними коливаннями –

OH груп та абсорбованої води. Отже, ATR-

FTIR аналіз підтвердив успішний синтез 

мембран. 

Морфологія мембран досліджувалась 

методом СЕМ. На СEM-зображеннях (рис. 3) 

поперечних зрізів модифікованих мембран 

простежується щільна однорідна структура. 

Чітко видно кремнеземну сітку, введення якої 

змінює морфологію мембрани, що приводить 

до утворення доменів та каналів у її структурі. 

В результаті покращується рух протонів, що 

збільшує протонну провідність 

нанокомпозитних мембран порівняно з 

полімерними.  
 

  
а) б) 

  
в) г) 

Рис. 3. СEM-зображення досліджуваних зразків: a) М 1; б) М 2; в) М 3; г) М 4. 

 

Протонна провідність синтезованих 

мембран забезпечується гідрофільними 

мономерами полімерної матриці: 2-

акриламідо-2-метилпропансульфонова 

кислота (AMПС) містить у своєму складі 

протонодонорні сульфогрупи; акрилова 

кислота (AК) та її полімер, поліакрилова 

кислота (ПАК), містять карбоксильні групи, 

однак, мають низьку протонну провідність, 

яка посилюється при додаванні інших 

переносників протонів і покращенні мережі 

водневих зв’язків. У розрахунку 

гідрофільно/гідрофобного співвідношення у 

полімерах враховували тільки вклад АМПС. 

Результати вимірювання протонної 

провідності мембран, проведені при 

температурах 30-90°C і 95% відносній 

вологості, представлені в табл. 2.  
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Таблиця 2. Протонна провідність мембран при різних температурах. 

Зразок АМПС/АН 30°C 50°C 70°C 90°C 

М 1 0,06 9,95 7,26 4,51 1,12 

М 2 0,09 15,17 8,91 5,89 1,94 

М 3 0,06 12,09 8,75 5,72 1,83 

М 4 0,09 17,17 9,32 7,41 2,27 

 

Як видно з рис. 4, зі збільшенням 

мольної частки гідрофільного мономера 

АМПС протонна провідність мембран 

збільшується, що зумовлено сильними 

протонопровідними властивостями 

сульфогруп у складі цього мономера, які 

дисоціюють у вологому середовищі з 

утворенням протонів, що сполучаються з 

молекулами води і у формі іонів гідроксонію 

(H₃O⁺) рухаються в каналах. 

Експериментально виміряна при температурі 

25°C протонна провідність зразків мембран 

М 1 – М 2 з мольним співвідношенням 

АМПС/АН = 0,06 і 0,09 становила відповідно 

від 9,95×10⁻² та 15,17×10⁻² мСм/см. З ростом 

температури спостерігається зменшення 

протонної провідності, що можна пояснити 

частковою дегідратацією мембран. При 

збільшенні температури від 30°C до 90°C 

протонна провідність мембран зменшується в 

середньому в 9 разів. Нанокомпозитні 

мембрани демонструють вищі значення 

протонної провідності порівняно з чистими 

полімерами, оскільки кремнеземна сітка має 

властивість утримувати воду, яка сприяє 

іонному переносу (рис. 4). Для 

досліджуваних мембран були також виміряні 

водопоглинання і набрякання в метанолі (рис. 

5, 6). Вода утримується у гідрофільних 

доменах та сприяє транспортуванню протонів, 

проте надмірне поглинання води знижує 

механічну стабільність мембран. Більша 

кількість гідрофільних груп у зразку М 2 

робить його значно сильнішим адсорбентом 

порівняно зі зразком М 1. Досліджено також 

вплив температури на водопоглинання 

мембран. Як показано у табл. 3, поглинання 

води мембранами зростає з підвищенням 

температури. Це пояснюється тим, що 

посилюється рух полімерного ланцюга і 

зростає вільний об’єм для переносу протонів 

 
Рис. 4. Протонна провідність мембран залежно 

від АМПС/АН і температури.  

 

Таблиця 3. Водопоглинання мембран при різних температурах. 

Зразок АМПС/АН 22°C 50°C 80°C 

М 1 0,06 80,2 93,8 101,4 

М 2 0,09 84,1 100,5 107,0 

М 3 0,06 89,1 100,7 114,7 

М 4 0,09 100,6 111,8 125,2 

 

Як уже відзначалось, нанокомпозитні 

мембрани краще утримують воду за рахунок 

груп Si-O-Si, а також завдяки покращеній 

морфології. Завдяки високій полярності 

зв’язки Si-O-Si утримують воду через 

адсорбцію та хімічні взаємодії, а також за 

рахунок впливу на структуру матеріалу. 

Значення протонної провідності мембран 

прямо корелює з водопоглинанням, що видно 

з рис. 5, оскільки і протонна провідність, і 
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водопоглинання залежать від 

гідрофільно/гідрофобного співвідношення та 

морфології мембран.  

 
Рис. 5. Протонна провідність vs водопоглинання. 

 

Дані набрякання мембран в метанолі 

(рис. 5) вказують на зростання поглинання 

метанолу в послідовності М 3 < М 4. 

Значення поглинання метанолу для 

отриманих мембран є меншими, ніж для 

Nafion 117 (45,4 ± 0,8). 

 
Рис. 6. Поглинання метанолу нанокомпозитними мембранами. 

 

Висновки 

Поліакрилові мембрани були успішно 

синтезовані шляхом УФ-полімеризації 

гідрофільних та гідрофобних акрилових 

мономерів. Досліджено основні 

характеристики мембран – протонну 

провідність, водопоглинання, проникність 

метанолу. Значення даних величин 

визначається вмістом гідрофільного 

компонента – АМПС. Модифікація 

полімерних мембран наночастинками 

кремнезему золь-гель методом in situ 

покращує їхні характеристики, при цьому 

проникність метанолу зменшується, що 

дозволяє використовувати даний метод для 

розроблення мембран для прямих 

метанольних паливних елементів.  

 

Фінансування: Цю роботу було підтримано 

Національною академією наук України в 

рамках проекту № 0125U002894 (2025–

2026 рр.). 
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New polymer and nanocomposite membranes with proton-conducting properties were 

synthesized based on hydrophilic and hydrophobic acrylic monomers and silica nanoparticles. The 
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inorganic network of the membranes was formed in the polymer matrix as a result of the sol-gel 

reaction of alkoxysilane precursors - 3-methacryloxypropyltrimethoxysilane (MAPTMS) and 

tetraethylorthosilicate (TEOS) in situ. The composition of the initial compositions was varied by 

changing the ratio of hydrophilic and hydrophobic monomers. The morphology and chemical structure 

of the synthesized membranes were characterized by SEM and ATR-FTIR methods. The proton 

conductivity, water and methanol absorption were measured for the synthesized membranes. It was 

established that there is a correlation between the ratio of hydrophilic/hydrophobic monomers and the 

properties of the membranes, which allows for controlled tuning of their characteristics. The effect of 

silica nanoparticles on the properties of the membranes was studied. The obtained polymer and 

nanocomposite materials are promising for the development of proton-conducting membranes for 

direct methanol fuel cells. 

Keywords: Keywords: membrane; nanocomposite; sol-gel precursor; acrylic monomer; proton 

conductivity. 
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